On the Third and Fourth Hankel Determinants for a Subclass of Analytic Functions

Author(s):  
Zhi-Gang Wang ◽  
Mohsan Raza ◽  
Muhammad Arif ◽  
Khurshid Ahmad
2021 ◽  
Vol 33 (4) ◽  
pp. 973-986
Author(s):  
Young Jae Sim ◽  
Paweł Zaprawa

Abstract In recent years, the problem of estimating Hankel determinants has attracted the attention of many mathematicians. Their research have been focused mainly on deriving the bounds of H 2 , 2 {H_{2,2}} or H 3 , 1 {H_{3,1}} over different subclasses of 𝒮 {\mathcal{S}} . Only in a few papers third Hankel determinants for non-univalent functions were considered. In this paper, we consider two classes of analytic functions with real coefficients. The first one is the class 𝒯 {\mathcal{T}} of typically real functions. The second object of our interest is 𝒦 ℝ ⁢ ( i ) {\mathcal{K}_{\mathbb{R}}(i)} , the class of functions with real coefficients which are convex in the direction of the imaginary axis. In both classes, we find lower and upper bounds of the third Hankel determinant. The results are sharp.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 721 ◽  
Author(s):  
Oh Sang Kwon ◽  
Young Jae Sim

Let SR * be the class of starlike functions with real coefficients, i.e., the class of analytic functions f which satisfy the condition f ( 0 ) = 0 = f ′ ( 0 ) − 1 , Re { z f ′ ( z ) / f ( z ) } > 0 , for z ∈ D : = { z ∈ C : | z | < 1 } and a n : = f ( n ) ( 0 ) / n ! is real for all n ∈ N . In the present paper, it is obtained that the sharp inequalities − 4 / 9 ≤ H 3 , 1 ( f ) ≤ 3 / 9 hold for f ∈ SR * , where H 3 , 1 ( f ) is the third Hankel determinant of order 3 defined by H 3 , 1 ( f ) = a 3 ( a 2 a 4 − a 3 2 ) − a 4 ( a 4 − a 2 a 3 ) + a 5 ( a 3 − a 2 2 ) .


2017 ◽  
Vol 25 (3) ◽  
pp. 199-214
Author(s):  
S.P. Vijayalakshmi ◽  
T.V. Sudharsan ◽  
Daniel Breaz ◽  
K.G. Subramanian

Abstract Let A be the class of analytic functions f(z) in the unit disc ∆ = {z ∈ C : |z| < 1g with the Taylor series expansion about the origin given by f(z) = z+ ∑n=2∞ anzn, z ∈∆ : The focus of this paper is on deriving upper bounds for the third order Hankel determinant H3(1) for two new subclasses of A.


2018 ◽  
Vol 97 (3) ◽  
pp. 435-445 ◽  
Author(s):  
BOGUMIŁA KOWALCZYK ◽  
ADAM LECKO ◽  
YOUNG JAE SIM

We prove the sharp inequality $|H_{3,1}(f)|\leq 4/135$ for convex functions, that is, for analytic functions $f$ with $a_{n}:=f^{(n)}(0)/n!,~n\in \mathbb{N}$, such that $$\begin{eqnarray}Re\bigg\{1+\frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}\bigg\}>0\quad \text{for}~z\in \mathbb{D}:=\{z\in \mathbb{C}:|z|<1\},\end{eqnarray}$$ where $H_{3,1}(f)$ is the third Hankel determinant $$\begin{eqnarray}H_{3,1}(f):=\left|\begin{array}{@{}ccc@{}}a_{1} & a_{2} & a_{3}\\ a_{2} & a_{3} & a_{4}\\ a_{3} & a_{4} & a_{5}\end{array}\right|.\end{eqnarray}$$


Author(s):  
Oh Sang Kwon ◽  
Young Jae Sim

Let ${\mathcal{SR}}^*$ be the class of starlike functions with real coefficients, i.e., the class of analytic functions $f$ which satisfy the condition $f(0)=0=f'(0)-1$, Re{z f'(z) / f (z)} &gt; 0, for $z\in\mathbb{D}:=\{z\in\mathbb{C}:|z|&lt;1 \}$ and $a_n:=f^{(n)}(0)/n!$ is real for all $n\in\mathbb{N}$. In the present paper, the sharp estimates of the third Hankel determinant $H_{3,1}$ over the class ${\mathcal{SR}}^*$ are computed.


Author(s):  
Renaud Chorlay

This article examines ways of expressing generality and epistemic configurations in which generality issues became intertwined with epistemological topics, such as rigor, or mathematical topics, such as point-set theory. In this regard, three very specific configurations are discussed: the first evolving from Niels Henrik Abel to Karl Weierstrass, the second in Joseph-Louis Lagrange’s treatises on analytic functions, and the third in Emile Borel. Using questions of generality, the article first compares two major treatises on function theory, one by Lagrange and one by Augustin Louis Cauchy. It then explores how some mathematicians adopted the sophisticated point-set theoretic tools provided for by the advocates of rigor to show that, in some way, Lagrange and Cauchy had been right all along. It also introduces the concept of embedded generality for capturing an approach to generality issues that is specific to mathematics.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1041 ◽  
Author(s):  
Gangadharan Murugusundaramoorthy ◽  
Teodor Bulboacă

Using the operator L c a defined by Carlson and Shaffer, we defined a new subclass of analytic functions ML c a ( λ ; ψ ) defined by a subordination relation to the shell shaped function ψ ( z ) = z + 1 + z 2 . We determined estimate bounds of the four coefficients of the power series expansions, we gave upper bound for the Fekete–SzegőSzegő functional and for the Hankel determinant of order two for f ∈ ML c a ( λ ; ψ ) .


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 418 ◽  
Author(s):  
Lei Shi ◽  
Izaz Ali ◽  
Muhammad Arif ◽  
Nak Eun Cho ◽  
Shehzad Hussain ◽  
...  

In the present article, we consider certain subfamilies of analytic functions connected with the cardioid domain in the region of the unit disk. The purpose of this article is to investigate the estimates of the third Hankel determinant for these families. Further, the same bounds have been investigated for two-fold and three-fold symmetric functions.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 501 ◽  
Author(s):  
Hai-Yan Zhang ◽  
Huo Tang ◽  
Xiao-Meng Niu

Let S l * denote the class of analytic functions f in the open unit disk D = { z : | z | < 1 } normalized by f ( 0 ) = f ′ ( 0 ) − 1 = 0 , which is subordinate to exponential function, z f ′ ( z ) f ( z ) ≺ e z ( z ∈ D ) . In this paper, we aim to investigate the third-order Hankel determinant H 3 ( 1 ) for this function class S l * associated with exponential function and obtain the upper bound of the determinant H 3 ( 1 ) . Meanwhile, we give two examples to illustrate the results obtained.


Author(s):  
Nak Eun Cho ◽  
Bogumiła Kowalczyk ◽  
Oh Sang Kwon ◽  
Adam Lecko ◽  
Young Jae Sim

AbstractFor analytic functions f in the unit disk $${\mathbb {D}}$$D normalized by $$f(0)=0$$f(0)=0 and $$f'(0)=1$$f′(0)=1 satisfying in $${\mathbb {D}}$$D respectively the conditions $${{\,\mathrm{Re}\,}}\{ (1-z)f'(z) \}> 0,\ {{\,\mathrm{Re}\,}}\{ (1-z^2)f'(z) \}> 0,\ {{\,\mathrm{Re}\,}}\{ (1-z+z^2)f'(z) \}> 0,\ {{\,\mathrm{Re}\,}}\{ (1-z)^2f'(z) \} > 0,$$Re{(1-z)f′(z)}>0,Re{(1-z2)f′(z)}>0,Re{(1-z+z2)f′(z)}>0,Re{(1-z)2f′(z)}>0, the sharp upper bound of the third logarithmic coefficient in case when $$f''(0)$$f′′(0) is real was computed.


Sign in / Sign up

Export Citation Format

Share Document