scholarly journals Degenerations of log Hodge de Rham spectral sequences, log Kodaira vanishing theorem in characteristic $$p>0$$ and log weak Lefschetz conjecture for log crystalline cohomologies

Author(s):  
Yukiyoshi Nakkajima ◽  
Fuetaro Yobuko
2021 ◽  
Vol 9 ◽  
Author(s):  
Benjamin Antieau ◽  
Bhargav Bhatt ◽  
Akhil Mathew

Abstract We give counterexamples to the degeneration of the Hochschild-Kostant-Rosenberg spectral sequence in characteristic p, both in the untwisted and twisted settings. We also prove that the de Rham-HP and crystalline-TP spectral sequences need not degenerate.


1997 ◽  
Vol 147 ◽  
pp. 63-69 ◽  
Author(s):  
Koji Cho

AbstractWe prove vanishing theorems of cohomology groups of local system, which generalize Kita and Noumi’s result and partially Aomoto’s result. Main ingredients of our proof are the Hodge to de Rham spectral sequence and Serre’s vanishing theorem in algebraic geometry.


2017 ◽  
Vol 153 (10) ◽  
pp. 2147-2170 ◽  
Author(s):  
Linquan Ma ◽  
Karl Schwede ◽  
Kazuma Shimomoto

In this paper we study the local cohomology modules of Du Bois singularities. Let $(R,\mathfrak{m})$ be a local ring; we prove that if $R_{\text{red}}$ is Du Bois, then $H_{\mathfrak{m}}^{i}(R)\rightarrow H_{\mathfrak{m}}^{i}(R_{\text{red}})$ is surjective for every $i$. We find many applications of this result. For example, we answer a question of Kovács and Schwede [Inversion of adjunction for rational and Du Bois pairs, Algebra Number Theory 10 (2016), 969–1000; MR 3531359] on the Cohen–Macaulay property of Du Bois singularities. We obtain results on the injectivity of $\operatorname{Ext}$ that provide substantial partial answers to questions in Eisenbud et al. [Cohomology on toric varieties and local cohomology with monomial supports, J. Symbolic Comput. 29 (2000), 583–600] in characteristic $0$. These results can also be viewed as generalizations of the Kodaira vanishing theorem for Cohen–Macaulay Du Bois varieties. We prove results on the set-theoretic Cohen–Macaulayness of the defining ideal of Du Bois singularities, which are characteristic-$0$ analogs and generalizations of results of Singh–Walther and answer some of their questions in Singh and Walther [On the arithmetic rank of certain Segre products, in Commutative algebra and algebraic geometry, Contemporary Mathematics, vol. 390 (American Mathematical Society, Providence, RI, 2005), 147–155]. We extend results on the relation between Koszul cohomology and local cohomology for $F$-injective and Du Bois singularities first shown in Hochster and Roberts [The purity of the Frobenius and local cohomology, Adv. Math. 21 (1976), 117–172; MR 0417172 (54 #5230)]. We also prove that singularities of dense $F$-injective type deform.


2004 ◽  
Vol 01 (01n02) ◽  
pp. 33-48 ◽  
Author(s):  
E. J. BEGGS ◽  
TOMASZ BRZEZIŃSKI

Various aspects of the de Rham cohomology of Hopf algebras are discussed. In particular, it is shown that the de Rham cohomology of an algebra with the differentiable coaction of a cosemisimple Hopf algebra with trivial 0-th cohomology group, reduces to the de Rham cohomology of (co)invariant forms. Spectral sequences are discussed and the van Est spectral sequence for Hopf algebras is introduced. A definition of Hopf–Lie algebra cohomology is also given.


2013 ◽  
Vol 56 (2) ◽  
pp. 501-508
Author(s):  
Ana Cristina Ferreira

AbstractWe prove a vanishing theorem for the twisted de Rham cohomology of a compact manifold.


2015 ◽  
Vol 26 (01) ◽  
pp. 1550011 ◽  
Author(s):  
Mao Sheng ◽  
He Xin ◽  
Kang Zuo

We provide a construction of associating a de Rham subbundle to a Higgs subbundle in characteristic p in the geometric case. As applications, we obtain a Higgs semistability result and a W2-unliftable result.


Sign in / Sign up

Export Citation Format

Share Document