Experimental and Numerical Study of Bearing Capacity of Circular Footings on Layered Soils With and Without Skirted Sand Piles

Author(s):  
H. Zeydi ◽  
A. H. Boushehrian
2020 ◽  
Vol 82 (2) ◽  
pp. 215-224
Author(s):  
V.I. Erofeev ◽  
I.A. Samokhvalov

A numerical study of the survivability of the flange assembly is carried out upon reaching a critical load and in the presence of a defect in one of the design areas, taking into account the calculated values of the aerodynamic coefficients. An experiment is being carried out to determine the values of the wind load acting on the supporting legs of a metal tower. The calculation of the stressstrain state is performed using software system as SCAD Office and IDEA StatiCa 10.0. After calculating the forces in the core model of the structure, a threedimensional plate model of the assembly is formed and prepared for calculation. According to the results of the experiment, a graph was compiled with the values of aerodynamic coefficients, which were used in calculating the stressstrain state of the node. The analysis of the calculation results revealed that in the design (defectfree) state of the structure, the safety factor of the bearing units and elements is 35-40% (equivalent stresses were 165 MPa). If there is a defect in the metal structures of the belt in the region of the flange, the equivalent stresses increase to 247.6 MPa in the region of the cleavage (defective hole), thus, the margin in bearing capacity drops to 0.4%. As a result of the assessment of the survivability of the flange connection, it was revealed that the connection has a high potential survivability, in turn, the flange itself is able to work in the presence of some defects without reducing its bearing capacity to a critical level. The aerodynamic coefficients obtained in this work will determine the wind load on this type of profile and can be used in design calculations of tower structures for wind loads.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhanzhan Tang ◽  
Zhixiang He ◽  
Zheng Chen ◽  
Lingkun Chen ◽  
Hanyang Xue ◽  
...  

For an RC beam, the strength of steel rebar, the bonding strength between the concrete and reinforcement, and the bite action between the aggregates will deteriorate significantly due to corrosion. In the present study, 10 RC beams were designed to study the impact of corrosion on the shear bearing capacity. The mechanism of corrosion for stirrups and longitudinal bars and their effects were analyzed. Based on the existing experimental data, the correlation between the stirrup corrosion factor and the cross section loss rate was obtained. An effective prediction formula on the shear bearing capacity of the corroded RC beams was proposed and validated by the experimental results. Moreover, a numerical analysis approach based on the FE technique was proposed for the prediction of the shear strength. The results show that corrosion of the reinforcements could reduce the shear strength of the RC beams. The corrosion of stirrups can be numerically simulated by the reduction of the cross section. The formulae in the literature are conservative and the predictions are very dispersed, while the predictions by the proposed formula agree very well with the experiment results.


2020 ◽  
Vol 218 ◽  
pp. 108123
Author(s):  
Shuangxi Xu ◽  
Ziwen Gu ◽  
Wei Shen ◽  
Qiheng Lei ◽  
Weiguo Tang

Sign in / Sign up

Export Citation Format

Share Document