Integrating Spectral and Spatial features for Hyperspectral Image Classification with a Modified Composite Kernel Framework

Author(s):  
Shashi Ranjan ◽  
Jignesh N. Sarvaiya ◽  
Jigisha N. Patel
2021 ◽  
Vol 13 (4) ◽  
pp. 820
Author(s):  
Yaokang Zhang ◽  
Yunjie Chen

This paper presents a composite kernel method (MWASCK) based on multiscale weighted adjacent superpixels (ASs) to classify hyperspectral image (HSI). The MWASCK adequately exploits spatial-spectral features of weighted adjacent superpixels to guarantee that more accurate spectral features can be extracted. Firstly, we use a superpixel segmentation algorithm to divide HSI into multiple superpixels. Secondly, the similarities between each target superpixel and its ASs are calculated to construct the spatial features. Finally, a weighted AS-based composite kernel (WASCK) method for HSI classification is proposed. In order to avoid seeking for the optimal superpixel scale and fuse the multiscale spatial features, the MWASCK method uses multiscale weighted superpixel neighbor information. Experiments from two real HSIs indicate that superior performance of the WASCK and MWASCK methods compared with some popular classification methods.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1271
Author(s):  
Hongmin Gao ◽  
Yiyan Zhang ◽  
Yunfei Zhang ◽  
Zhonghao Chen ◽  
Chenming Li ◽  
...  

In recent years, hyperspectral image classification (HSI) has attracted considerable attention. Various methods based on convolution neural networks have achieved outstanding classification results. However, most of them exited the defects of underutilization of spectral-spatial features, redundant information, and convergence difficulty. To address these problems, a novel 3D-2D multibranch feature fusion and dense attention network are proposed for HSI classification. Specifically, the 3D multibranch feature fusion module integrates multiple receptive fields in spatial and spectral dimensions to obtain shallow features. Then, a 2D densely connected attention module consists of densely connected layers and spatial-channel attention block. The former is used to alleviate the gradient vanishing and enhance the feature reuse during the training process. The latter emphasizes meaningful features and suppresses the interfering information along the two principal dimensions: channel and spatial axes. The experimental results on four benchmark hyperspectral images datasets demonstrate that the model can effectively improve the classification performance with great robustness.


Sign in / Sign up

Export Citation Format

Share Document