scholarly journals Georeferencing of an Unmanned Aerial System by Means of an Iterated Extended Kalman Filter Using a 3D City Model

Author(s):  
Johannes Bureick ◽  
Sören Vogel ◽  
Ingo Neumann ◽  
Jakob Unger ◽  
Hamza Alkhatib

Abstract In engineering geodesy, the technical progress leads to various kinds of multi-sensor systems (MSS) capturing the environment. Multi-sensor systems, especially those mounted on unmanned aerial vehicles, subsequently called unmanned aerial system (UAS), have emerged in the past decade. Georeferencing for MSS and UAS is an indispensable task to obtain further products of the data captured. Georeferencing comprises at least the determination of three translations and three rotations. The availability and accuracy of Global Navigation Satellite System (GNSS) receivers, inertial measurement units, or other sensors for georeferencing is not or not constantly given in urban scenarios. Therefore, we utilize UAS-based laser scanner measurements on building facades. The building latter are modeled as planes in a three-dimensional city model. We determine the trajectory of the UAS by combining the laser scanner measurements with the plane parameters. The resulting implicit measurement equations and nonlinear equality constraints are covered within an iterated extended Kalman filter (IEKF). We developed a software simulation for testing the IEKF using different scenarios to evaluate the functionality, performance, strengths, and remaining challenges of the IEKF implemented.

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2280 ◽  
Author(s):  
Sören Vogel ◽  
Hamza Alkhatib ◽  
Johannes Bureick ◽  
Rozhin Moftizadeh ◽  
Ingo Neumann

Georeferencing is an indispensable necessity regarding operating with kinematic multi-sensor systems (MSS) in various indoor and outdoor areas. Information from object space combined with various types of prior information (e.g., geometrical constraints) are beneficial especially in challenging environments where common solutions for pose estimation (e.g., global navigation satellite system or external tracking by a total station) are inapplicable, unreliable or inaccurate. Consequently, an iterated extended Kalman filter is used and a general georeferencing approach by means of recursive state estimation is introduced. This approach is open to several types of observation inputs and can deal with (non)linear systems and measurement models. The capability of using both explicit and implicit formulations of the relation between states and observations, and the consideration of (non)linear equality and inequality state constraints is a special feature. The framework presented is evaluated by an indoor kinematic MSS based on a terrestrial laser scanner. The focus here is on the impact of several different combinations of applied state constraints and the dependencies of two classes of inertial measurement units (IMU). The results presented are based on real measurement data combined with simulated IMU measurements.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1031 ◽  
Author(s):  
Yuanlan Wen ◽  
Jun Zhu ◽  
Youxing Gong ◽  
Qian Wang ◽  
Xiufeng He

To keep the global navigation satellite system functional during extreme conditions, it is a trend to employ autonomous navigation technology with inter-satellite link. As in the newly built BeiDou system (BDS-3) equipped with Ka-band inter-satellite links, every individual satellite has the ability of communicating and measuring distances among each other. The system also has less dependence on the ground stations and improved navigation performance. Because of the huge amount of measurement data, the centralized data processing algorithm for orbit determination is suggested to be replaced by a distributed one in which each satellite in the constellation is required to finish a partial computation task. In the present paper, the balanced extended Kalman filter algorithm for distributed orbit determination is proposed and compared with the whole-constellation centralized extended Kalman filter, the iterative cascade extended Kalman filter, and the increasing measurement covariance extended Kalman filter. The proposed method demands a lower computation power; however, it yields results with a relatively good accuracy.


Sign in / Sign up

Export Citation Format

Share Document