Electrical Discharge Machining of Engineered Al-22%SiC Metal Matrix Composite: Surface Roughness Analysis, Optimization, Economic Analysis, and Sustainability Assessment

Author(s):  
Subhashree Naik ◽  
Sudhansu Ranjan Das ◽  
Debabrata Dhupal ◽  
Ajit Kumar Khatua
2020 ◽  
Vol 7 ◽  
pp. 20 ◽  
Author(s):  
Subhashree Naik ◽  
Sudhansu Ranjan Das ◽  
Debabrata Dhupal

Due to the widespread engineering applications of metal matrix composites especially in automotive, aerospace, military, and electricity industries; the achievement of desired shape and contour of the machined end product with intricate geometry and dimensions that are very challenging task. This experimental investigation deals with electrical discharge machining of newly engineered metal matrix composite of aluminum reinforced with 22 wt.% of silicon carbide particles (Al-22%SiC MMC) using a brass electrode to analyze the machined part quality concerning surface roughness and overcut. Forty-six sets of experimental trials are conducted by considering five machining parameters (discharge current, gap voltage, pulse-on-time, pulse-off-time and flushing pressure) based on Box-Behnken's design of experiments (BBDOEs). This article demonstrates the methodology for predictive modeling and multi-response optimization of machining accuracy and surface quality to enhance the hole quality in Al-SiC based MMC, employing response surface methodology (RSM) and desirability function approach (DFA). Finally, a novel approach has been proposed for economic analysis which estimated the total machining cost per part of rupees 211.08 during EDM of Al-SiC MMC under optimum machining conditions. Thereafter, under the influence of discharge current several observations are performed on machined surface morphology and hole characteristics by scanning electron microscope to establish the process. The result shows that discharge current has the significant contribution (38.16% for Ra, 37.12% in case of OC) in degradation of surface finish as well as the dimensional deviation of hole diameter, especially overcut. The machining data generated for the Al-SiC MMC will be useful for the industry.


Volume 3 ◽  
2004 ◽  
Author(s):  
Kuen Ming Shu ◽  
Hung Rung Shih ◽  
Wen Feng Lin ◽  
G. C. Tu

Electrical discharge machining (EDM) has been shown to be a versatile method for machining difficult-to-work materials including heated-treated steels, tungsten carbides and various conductive ceramics. However, low machining efficiency is one of the main EDM disadvantages. The topic of how to reduce machining time and maintains reasonable accuracy has always been of research interest. The main object of the present work was to develop an electrical discharge machining and grinding (EDMG) methodology to remove the re-solidified layer through the grinding induced by a metal matrix composite electrode prior to the re-solidified layer solidification. A metal matrix composite (Cu/SiCp) electrode, with an electroless pretreatment of Cu coating on SiCp to enhance bonding status between Cu and SiCp, with a rotating device was made and employed to study the EDMG technology. Machinabilities of mold material, HPM50 mold steel and P20 WC/Co, were investigated by the combined technologies of EDMG. The machined surfaces of these materials were examined by scanning electron microscopy (SEM) and their surface roughness measured by a profile meter. From the experimental results, it was found that higher material removal rate and lower surface roughness can be achieved when suitable electrode rotating speed, SiCp size and working current are chosen. In addition, the surface roughness of both materials could be improved as compared with that following the EDM process.


2014 ◽  
Vol 592-594 ◽  
pp. 405-409
Author(s):  
Arumugam Mahamani ◽  
N. Sakthivelon ◽  
Sai Kumar Jetti ◽  
M. Vijay Sekar Reddy ◽  
P. Vamsi Krishna Naidu ◽  
...  

In-situ aluminum matrix composites have good bonding strength and homogeneous distribution of particles, which offer improved mechanical property and wear resistance. Electrical discharge machining is considered as a suitable process for making complicated shape of difficult to machine materials. In this experimental work AA6061-6% TiB2/ZrB2in-situ metal matrix composite was fabricated using flex assisted synthesis. This experimental investigation is focused to study the influence of electrical discharge machining process parameter on surface roughness in machining of the AA6061-6% TiB2/ZrB2composite. Taguchi method and L9orthogonal lay out are applied to conduct the experimental work. Analysis of variance was performed to evaluate the percentage of contribution of each parameter. The analysis of the result indicates that discharge current has strongest influence on the surface roughness. This experimental study helps to select the optimal machining parameter to achieve good surface finish.


Sign in / Sign up

Export Citation Format

Share Document