New electromagnetic band gap antenna for multiple ultra wide band applications

2020 ◽  
Vol 9 (2) ◽  
pp. 109-115
Author(s):  
El Amjed Hajlaoui ◽  
Ziyad M. A. Almohaimeed
Frequenz ◽  
2017 ◽  
Vol 71 (11-12) ◽  
Author(s):  
Naveen Jaglan ◽  
Binod Kumar Kanaujia ◽  
Samir Dev Gupta ◽  
Shweta Srivastava

AbstractA dual band-notched MIMO/Diversity antenna is proposed in this paper. The proposed antenna ensures notches in WiMAX band (3.3–3.6 GHz) besides WLAN band (5–6 GHz). Mushroom Electromagnetic Band Gap (EBG) arrangements are employed for discarding interfering frequencies. The procedure followed to attain notches is antenna shape independent with established formulas. The electromagnetic coupling among two narrowly set apart Ultra-Wide Band (UWB) monopoles is reduced by means of decoupling bands and slotted ground plane. Monopoles are 90° angularly parted with steps on the radiator. This aids to diminish mutual coupling and also adds in the direction of impedance matching by long current route. S


A Hexagonal Microstrip Ultra Wide Band Fractal Antenna for wireless body area network applications is proposed. The Hexagonal antenna is powered through co-planar waveguide (CPW) feed structure. The proposed antenna uses a hexagonal fractal structures to achieve its Ultra Wide Band characterization. The addition of fractal elements introduces multi-resonance at different frequencies and covers a large bandwidth of 3.8GHz–10.1GHz respectively. This antenna creates a Fractal geometry inside the patch with similar in shape but difference in sizes. Electromagnetic Band Gap structures are introduced in order to improve gain and directivity of the antenna. Electromagnetic Bandgap Structure (EBG) is mainly focused on overcoming the limitation of Microstrip Patch antenna parameters such as low gain, excitation of surface waves. Electromagnetic Band Gap structures are defined as artificial periodic structures that exhibit unique electromagnetic features, such as frequency band gap for surface waves and in-phase reflection coefficient for incident plane waves, which makes them desirable for low-profile antenna designs. The Electromagnetic Band Gap structure is placed behind the antenna to suppress the propagation of surface wave and to improve gain, directivity and to reduce the side lobes of the radiation pattern. The effect of surface currents in the ground plane reduces the antennas operating bandwidth which is reduced by introducing defective ground structure. The size of the antenna is 25×25×1.588 . The proposed antenna has an average gain of 3.8dB. The radiation pattern obtained is unidirectional.


2010 ◽  
Vol 24 (2-3) ◽  
pp. 229-239 ◽  
Author(s):  
T. Masri ◽  
M. K. A. Rahim ◽  
H. A. Majid ◽  
O. Ayop ◽  
F. Zubir ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
pp. 1-10
Author(s):  
Sadia Sultana ◽  
Rinku Basak

A unique design and meander line implantable antenna is examined in this paper which satisfies the requirements of ultra-wide band. The designed antenna is integrated with the electromagnetic band gap (EBG) structure based ground plane to enhance the performance. Rectangular electromagnetic band gap (EBG) structures are represented here to evaluate the antenna performance. This compact and efficient MLA antenna is applied to improve the antenna performance for numerous implantable scenarios and biomedical applications. The proposed antenna with EGB ground plane is designed for both the simplified model and anatomical realistic models for the human body and executed the performance in bio-environment. To approve the results of implantable antennas more correctly, simulation is analyzed using anatomical realistic human models. The ultimate design has the whole dimension is 15.2 x 8.8 m2. The thickness of the antenna is about 0.8 mm. FR4 is chosen as the substrate material and Copper is chosen as the patch material. The antenna is enclosed biocompatible material with silicon inside the tissue in order to protect patient safety. Significant parameters such as S11 parameter, Far field (radiation pattern), VSWR, Efficiency, Directivity, Gain of the proposed antenna have calculated and measured the performance both the simplified and realistic human models. Comparison Analysis of S11 parameter for different substrate materials and patch materials have observed. The radiation mechanism and modified design of the implantable antenna reducing Specific Absorption Rate (SAR) for safety issues. All the simulation results and measurements are obtained from CST Microwave Studio to validate the design.


Sign in / Sign up

Export Citation Format

Share Document