atomistic calculations
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 27)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
I. G. Vasileiadis ◽  
L. Lymperakis ◽  
A. Adikimenakis ◽  
A. Gkotinakos ◽  
V. Devulapalli ◽  
...  

AbstractInGaN/GaN quantum wells (QWs) with sub-nanometer thickness can be employed in short-period superlattices for bandgap engineering of efficient optoelectronic devices, as well as for exploiting topological insulator behavior in III-nitride semiconductors. However, it had been argued that the highest indium content in such ultra-thin QWs is kinetically limited to a maximum of 33%, narrowing down the potential range of applications. Here, it is demonstrated that quasi two-dimensional (quasi-2D) QWs with thickness of one atomic monolayer can be deposited with indium contents far exceeding this limit, under certain growth conditions. Multi-QW heterostructures were grown by plasma-assisted molecular beam epitaxy, and their composition and strain were determined with monolayer-scale spatial resolution using quantitative scanning transmission electron microscopy in combination with atomistic calculations. Key findings such as the self-limited QW thickness and the non-monotonic dependence of the QW composition on the growth temperature under metal-rich growth conditions suggest the existence of a substitutional synthesis mechanism, involving the exchange between indium and gallium atoms at surface sites. The highest indium content in this work approached 50%, in agreement with photoluminescence measurements, surpassing by far the previously regarded compositional limit. The proposed synthesis mechanism can guide growth efforts towards binary InN/GaN quasi-2D QWs.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Nuttapong La-ongtup ◽  
Suttipong Wannapaiboon ◽  
Piyanut Pinyou ◽  
Worawat Wattanathana ◽  
Yuranan Hanlumyuang

The performance of modern Ni-based superalloys depends critically on the kinetic transport of point defects around solutes such as rhenium. Here, we use atomistic calculations to study the diffusion of vacancy in the low-concentration limit, using the crystalline fcc-framework nickel as a model. On-the-fly kinetic Monte Carlo is combined with an efficient energy-valley search to find energies of saddle points, based on energetics from the embedded atom method. With this technique, we compute the local energy barriers to vacancy hopping, tracer diffusivities, and migration energies of the low-concentration limit of Ni-Re alloys. It was estimated that the computed diffusion rates are comparable to the reported rates. The presence of Re atoms affects the difference between the energy of the saddle point and the initial energy of point defect hopping. In pure Ni, this difference is about 1 eV, while at 9.66 mol% Re, the value is raised to about 1.5 eV. The vacancy migration energy of vacancy in the 9.66 mol % Re sample is raised above that of pure Ni. Our findings demonstrate that even in the low-concentration limit, Re solute atoms continue to play a crucial role in the mobility of the vacancies.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Cong Tao ◽  
Daniel Mutter ◽  
Daniel F. Urban ◽  
Christian Elsässer

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Li ◽  
A. Hallil ◽  
A. Metsue ◽  
A. Oudriss ◽  
J. Bouhattate ◽  
...  

AbstractHydrogen-grain-boundaries interactions and their role in intergranular fracture are well accepted as one of the key features in understanding hydrogen embrittlement in a large variety of common engineer situations. These interactions implicate some fundamental processes classified as segregation, trapping and diffusion of the solute which can be studied as a function of grain boundary configuration. In the present study, we carried out an extensive analysis of four grain-boundaries based on the complementary of atomistic calculations and experimental data. We demonstrate that elastic deformation has an important contribution on the segregation energy which cannot be simply reduced to a volume change and need to consider the deviatoric part of strain. Additionally, some significant configurations of the segregation energy depend on the long-range elastic distortion and allows to rationalize the elastic contribution in three terms. By investigating the different energy barriers involved to reach all the segregation sites, the antagonist impact of grain boundaries on hydrogen diffusion and trapping process was elucidated. The segregation energy and migration energy are two fundamental parameters in order to classify the grain-boundaries as a trapping location or short circuit for diffusion.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4104
Author(s):  
Simone Sanna ◽  
Julian Plaickner ◽  
Kris Holtgrewe ◽  
Vincent M. Wettig ◽  
Eugen Speiser ◽  
...  

Two-dimensional rare-earth silicide layers deposited on silicon substrates have been intensively investigated in the last decade, as they can be exploited both as Ohmic contacts or as photodetectors, depending on the substrate doping. In this study, we characterize rare-earth silicide layers on the Si(111) surface by a spectroscopic analysis. In detail, we combine Raman and reflectance anisotropy spectroscopy (RAS) with first-principles calculations in the framework of the density functional theory. RAS suggests a weakly isotropic surface, and Raman spectroscopy reveals the presence of surface localized phonons. Atomistic calculations allow to assign the detected Raman peaks to phonon modes localized at the silicide layer. The good agreement between the calculations and the measurements provides a strong argument for the employed structural model.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4044
Author(s):  
Giovanni La Penna ◽  
Davide Tiana ◽  
Paolo Giannozzi

In the study of materials and macromolecules by first-principle methods, the bond order is a useful tool to represent molecules, bulk materials and interfaces in terms of simple chemical concepts. Despite the availability of several methods to compute the bond order, most applications have been limited to small systems because a high spatial resolution of the wave function and an all-electron representation of the electron density are typically required. Both limitations are critical for large-scale atomistic calculations, even within approximate density-functional theory (DFT) approaches. In this work, we describe our methodology to quickly compute delocalization indices for all atomic pairs, while keeping the same representation of the wave function used in most compute-intensive DFT calculations on high-performance computing equipment. We describe our implementation into a post-processing tool, designed to work with Quantum ESPRESSO, a popular open-source DFT package. In this way, we recover a description in terms of covalent bonds from a representation of wave function containing no explicit information about atomic types and positions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ovidiu Cojocaru ◽  
Ana-Maria Lepadatu ◽  
George Alexandru Nemnes ◽  
Toma Stoica ◽  
Magdalena Lidia Ciurea

AbstractWe present a detailed study regarding the bandgap dependence on diameter and composition of spherical Ge-rich GexSi1−x nanocrystals (NCs). For this, we conducted a series of atomistic density functional theory (DFT) calculations on H-passivated NCs of Ge-rich GeSi random alloys, with Ge atomic concentration varied from 50 to 100% and diameters ranging from 1 to 4 nm. As a result of the dominant confinement effect in the DFT computations, a composition invariance of the line shape of the bandgap diameter dependence was found for the entire computation range, the curves being shifted for different Ge concentrations by ΔE(eV) = 0.651(1 − x). The shape of the dependence of NCs bandgap on the diameter is well described by a power function 4.58/d1.25 for 2–4 nm diameter range, while for smaller diameters, there is a tendency to limit the bandgap to a finite value. By H-passivation of the NC surface, the effect of surface states near the band edges is excluded aiming to accurately determine the NC bandgap. The number of H atoms necessary to fully passivate the spherical GexSi1−x NC surface reaches the total number atoms of the Ge + Si core for smallest NCs and still remains about 25% from total number of atoms for bigger NC diameters of 4 nm. The findings are in line with existing theoretical and experimental published data on pure Ge NCs and allow the evaluation of the GeSi NCs behavior required by desired optical sensor applications for which there is a lack of DFT simulation data in literature.


2021 ◽  
Author(s):  
xavier FEAUGAS ◽  
jiaqi Li ◽  
Malek Hallil ◽  
Arnaud Metsue ◽  
Abdelali Oudriss ◽  
...  

Abstract Hydrogen-grain-boundaries interactions and their role in intergranular fracture are well accepted as one of the key features in understanding hydrogen embrittlement in a large variety of common engineer situations. These interactions implicate some fundamental processes classified as segregation, trapping and diffusion of the solute which can be studied as a function of grain boundary configuration. In the present study, we carried out an extensive analysis of four grain-boundaries based on the complementary of atomistic calculations and experimental data. We demonstrate that elastic deformation has an important contribution on the segregation energy which cannot be simply reduced to a volume change and need to consider the deviatoric part of strain. Additionally, some significant configurations of the segregation energy depend on the long-range elastic distortion and allows to rationalize the elastic contribution in three terms. By investigating the different energy barriers involved to reach all the segregation sites, the antagonist impact of grain boundaries on hydrogen diffusion and trapping process was elucidated. The segregation energy and migration energy are two fundamental parameters in order to classify the grain-boundaries as a trapping location or short circuit for diffusion.


Sign in / Sign up

Export Citation Format

Share Document