Performance analysis of biometric recognition system based on palmprint

2018 ◽  
Vol 12 (4) ◽  
pp. 1281-1289 ◽  
Author(s):  
Huma Farooq ◽  
Sameena Naaz
Author(s):  
Milind E Rane ◽  
Umesh S Bhadade

The paper proposes a t-norm-based matching score fusion approach for a multimodal heterogenous biometric recognition system. Two trait-based multimodal recognition system is developed by using biometrics traits like palmprint and face. First, palmprint and face are pre-processed, extracted features and calculated matching score of each trait using correlation coefficient and combine matching scores using t-norm based score level fusion. Face database like Face 94, Face 95, Face 96, FERET, FRGC and palmprint database like IITD are operated for training and testing of algorithm. The results of experimentation show that the proposed algorithm provides the Genuine Acceptance Rate (GAR) of 99.7% at False Acceptance Rate (FAR) of 0.1% and GAR of 99.2% at FAR of 0.01% significantly improves the accuracy of a biometric recognition system. The proposed algorithm provides the 0.53% more accuracy at FAR of 0.1% and 2.77% more accuracy at FAR of 0.01%, when compared to existing works.


Author(s):  
Dr. I. Jeena Jacob

The biometric recognition plays a significant and a unique part in the applications that are based on the personal identification. This is because of the stability, irreplaceability and the uniqueness that is found in the biometric traits of the humans. Currently the deep learning techniques that are capable of strongly generalizing and automatically learning, with the enhanced accuracy is utilized for the biometric recognition to develop an efficient biometric system. But the poor noise removal abilities and the accuracy degradation caused due to the very small disturbances has made the conventional means of the deep learning that utilizes the convolutional neural network incompatible for the biometric recognition. So the capsule neural network replaces the CNN due to its high accuracy in the recognition and the classification, due to its learning capacities and the ability to be trained with the limited number of samples compared to the CNN (convolutional neural network). The frame work put forward in the paper utilizes the capsule network with the fuzzified image enhancement for the retina based biometric recognition as it is a highly secure and reliable basis of person identification as it is layered behind the eye and cannot be counterfeited. The method was tested with the dataset of face 95 database and the CASIA-Iris-Thousand, and was found to be 99% accurate with the error rate convergence of 0.3% to .5%


Author(s):  
David Zhang ◽  
Fengxi Song ◽  
Yong Xu ◽  
Zhizhen Liang

A biometric system can be regarded as a pattern recognition system. In this chapter, we discuss two advanced pattern recognition technologies for biometric recognition, biometric data discrimination and multi-biometrics, to enhance the recognition performance of biometric systems. In Section 1.1, we discuss the necessity, importance, and applications of biometric recognition technology. A brief introduction of main biometric recognition technologies are presented in Section 1.2. In Section 1.3, we describe two advanced biometric recognition technologies, biometric data discrimination and multi-biometric technologies. Section 1.4 outlines the history of related work and highlights the content of each chapter of this book.


Sign in / Sign up

Export Citation Format

Share Document