Reliability and performance prediction of a small serial solar photovoltaic system for rural consumption using the Gumbel-Hougaard family copula

Author(s):  
Anas Sani Maihulla ◽  
Ibrahim Yusuf
2018 ◽  
Vol 7 (2.25) ◽  
pp. 143
Author(s):  
Bhuvaneswari C ◽  
Vijay B ◽  
Natarajan P

The primary and most universal measure of all kinds of work by nature is the energy. Coal, Natural gas, Oil and Nuclear energy are net energy yielders and primary sources of energy. The intent of this paper is to assess the performance of 15KW solar power plant installed in Priyadarshini Engineering College (PEC) campus, Vaniyambadi, Vellore District, Tamil Nadu. A 15 kW solar PV plant has been installed to supply electricity to the internet laboratory and library (lighting load). The results obtained from monitoring a 15 KW Solar Photovoltaic system installed on a library roofing of 10m height building. The system was monitored between (July-Sep2016) from 9.30AM to 4.30PM for three days in a week from Monday to Wednesday. The results can be used to provide manufacturers to develop their products and enhance the knowledge in the future in order to improve the design of the off-grid solar photovoltaic system, return of investment during these years. This work focuses on the performance of the solar photovoltaic plant (July-Sep2016) monthly average demand and annual performance parameters, Efficiency, fill factor,capacity Utilisation factor and the characteristics have been plotted in a graph. The graph is drawn between Generated power vs consumed power. The annual yield of the solar photovoltaic plant ranged from 6500-7000 Kwh and performance ratio of 78%. It has capacity Utilisation factor with 6.97%. 


Author(s):  
Anupama KhareSaxena ◽  
Seema Saxena ◽  
K Sudhakar

In the present work, simulation and energy analysis of a grid-tied 100 kWp solar photovoltaic power plant mounted on an institute's building rooftop in Bhopal city of India are carried out. The present study provides insight into the solar power plant's performance linked to the medium range grid under actual operating conditions in Central India. It is observed that the standard performance ratio and the capacity factor of the plant are 80.72% and 19.27% respectively. The average monthly energy produced is highest in April and lowest in July. Simulation results using different simulation tools have been compared and are shown to be in near agreement with the real calculated values. This plant set-up is expected to gain profit after a period of 5.9 years with a capacity to mitigate 136 tons of CO2 emission annually. Practical application: This study estimates the energy output, system losses and performance parameters for a 100 kWp rooftop grid connected solar photovoltaic system. This helps to check the feasibility of such a system at this location. Also the payback period and reduction in carbon footprint are calculated to highlight the economic and environmental benefits. This would attract public interest for installation of more such plants on rooftops of buildings in the near future.


2021 ◽  
Vol 1055 (1) ◽  
pp. 012150
Author(s):  
B A Tlhabologo ◽  
G Molosiwa ◽  
O Ongadile ◽  
Ravi Samikannu

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Varaprasad Janamala

AbstractA new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduction of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin in radial distribution systems and its suitability for practical applications.


2020 ◽  
Vol 29 (15) ◽  
pp. 2050246 ◽  
Author(s):  
B. N. Ch. V. Chakravarthi ◽  
G. V. Siva Krishna Rao

In solar photovoltaic (PV)-based DC microgrid systems, the voltage output of the classical DC–DC converter produces very less voltage as a result of poor voltage gain. Therefore, cascaded DC–DC boost converters are mandatory for boosting the voltage to match the DC microgrid voltage. However, the number of devices utilized in the DC–DC conversion stage becomes higher and leads to more losses. Thereby, it affects the system efficiency and increases the complication of the system and cost. In order to overcome this drawback, a novel double-boost DC–DC converter is proposed to meet the voltage in DC microgrid. Also, this paper discusses the detailed operation of maximum power point (MPP) tracking techniques in the novel double-boost DC–DC converter topology. The fundamental [Formula: see text]–[Formula: see text] and [Formula: see text]–[Formula: see text] characteristics of solar photovoltaic system, operational details of MPP execution and control strategies for double-boost DC/DC converter are described elaborately. The proposed converter operation and power injection into the DC microgrid are verified through the real-time PSCAD simulation and the validation is done through the experiment with hardware module which is indistinguishable with the simulation platform.


Sign in / Sign up

Export Citation Format

Share Document