Structural modelling of reinforced concrete planar frames under vertical ground motion

Author(s):  
Grigorios E. Manoukas
2015 ◽  
Vol 744-746 ◽  
pp. 898-904
Author(s):  
Hao Lin ◽  
Yu Song

In recent research of seismic engineering, the damage of bridge due to vertical motion aroused wide concern. Field evidence, experimental results and numerical simulation analysis suggested that vertical ground motion can significantly impact the seismic performance of reinforced concrete (RC) bridge. In this paper, firstly, a FEM model of a continuous rigid frame bridge in China was established . Then the bridge was analyzed using time-history analysis under strong earthquake . Internal force excluding and including vertical motion are compared.Then, the incremental dynamic analysis (IDA) and fiber model are used to calculated the vertical displacement of the node in the top of pier and the sectional curvature of pier. Computational results show that vertical ground motion can increase the internal force and displacement ,as well as reduce the ductility and moment capacity of piers. It is concluded that vertical motion can't be ignored in structure design.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Yingchun Jiang ◽  
Tielin Liu ◽  
Yikui Bai

A numerical algorithm is presented to analyze earthquake response of tall reinforced concrete (RC) chimneys based on stick multidegree-of-freedom models. The algorithm considers the eccentricity phenomena between spatial discrete nodes and corresponding centroids of investigated lumps. The spatial discrete segments of the chimney are used to construct the investigated lumps. The equations of dynamic equilibrium of the investigated lumps are derived, and the numerical calculation procedure is implemented. Phenomena of eccentricity are studied for 150 m and 210 m RC chimneys. Seismic stresses and effects of vertical ground motion for the two chimneys are also studied. Numerical results show that the tensile and compressive stresses of the seismic control cross sections of the chimneys may increase under the actions of several specific earthquake waves by considering existing eccentricities. The effect of eccentricity on the earthquake responses of tall RC chimney should be considered, and stresses caused by vertical ground motion should not be neglected to obtain accurate earthquake response of chimneys.


Sign in / Sign up

Export Citation Format

Share Document