Site response analysis of vertical ground motion in consideration of soil nonlinearity

2017 ◽  
Vol 102 ◽  
pp. 124-136 ◽  
Author(s):  
Chi-Chin Tsai ◽  
Hsing-Wen Liu
2012 ◽  
Vol 43 ◽  
pp. 202-217 ◽  
Author(s):  
Camilo Phillips ◽  
Albert R. Kottke ◽  
Youssef M.A. Hashash ◽  
Ellen M. Rathje

2020 ◽  
Vol 12 (13) ◽  
pp. 5273 ◽  
Author(s):  
Karma Tempa ◽  
Raju Sarkar ◽  
Abhirup Dikshit ◽  
Biswajeet Pradhan ◽  
Armando Lucio Simonelli ◽  
...  

Earthquakes, when it comes to natural calamities, are characteristically devastating and pose serious threats to buildings in urban areas. Out of multiple seismic regions in the Himalayas, Bhutan Himalaya is one that reigns prominent. Bhutan has seen several moderate-sized earthquakes in the past century and various recent works show that a major earthquake like the 2015 Nepal earthquake is impending. The southwestern city of Bhutan, Phuentsholing is one of the most populated regions in the country and the present study aims to explore the area using geophysical methods (Multispectral Analysis of Surface Waves (MASW)) for understanding possibilities pertaining to infrastructural development. The work involved a geophysical study on eight different sites in the study region which fall under the local area plan of Phuentsholing City. The geophysical study helps to discern shear wave velocity which indicates the soil profile of a region along with possible seismic hazard during an earthquake event, essential for understanding the withstanding power of the infrastructure foundation. The acquired shear wave velocity by MASW indicates visco-elastic soil profile down to a depth of 22.2 m, and it ranged from 350 to 600 m/s. A site response analysis to understand the correlation of bedrock rigidness to the corresponding depth was conducted using EERA (Equivalent-linear Earthquake Site Response Analysis) software. The amplification factors are presented for each site and maximum amplification factors are highlighted. These results have led to a clear indication of how the bedrock characteristics influence the surface ground motion parameters for the corresponding structure period. The results infer that the future constructional activity in the city should not be limited to two- to five-story buildings as per present practice. Apart from it, a parametric study was initiated to uncover whatever effects rigid bedrock has upon hazard parameters for various depths of soil profile up to 30 m, 40 m, 60 m, 80 m, 100 m, 120 m, 140 m, 160 m, 180 m and 200 m from the ground surface. The overriding purpose of doing said parametric study is centered upon helping the stack holders who can use the data for future development. Such a study is the first of its kind for the Bhutan region, which suffers from the unavailability of national seismic code, and this is a preliminary step towards achieving it.


2017 ◽  
Vol 33 (2) ◽  
pp. 499-528 ◽  
Author(s):  
Zeynep Gülerce ◽  
Ronnie Kamai ◽  
Norman A. Abrahamson ◽  
Walter J. Silva

Empirical ground motion models for the vertical component from shallow crustal earthquakes in active tectonic regions are derived using the PEER NGA-West2 database. The model is applicable to magnitudes 3.0–8.0, distances of 0–300 km, and spectral periods of 0–10 s. The model input parameters are the same as used by Abrahamson et al. (2014) except that the nonlinear site response and depth to bedrock effects are evaluated but found to be insignificant. Regional differences in large distance attenuation and site amplification scaling between California, Japan, China, Taiwan, Italy, and the Middle East are included. Scaling for the hanging-wall effect is incorporated using the constraints from numerical simulations by Donahue and Abrahamson (2014) . The standard deviation is magnitude dependent with smaller magnitudes leading to larger standard deviations at short periods but smaller standard deviations at long periods. The vertical ground motion model developed in this study can be paired with the horizontal component model proposed by Abrahamson et al. (2014) to produce a V/H ratio. For applications where the horizontal spectrum is derived from the weighted average of several horizontal ground motion models, a V/H model derived directly from the V/H data (such as Gülerce and Abrahamson 2011 ) should be preferred.


Sign in / Sign up

Export Citation Format

Share Document