First report of Epicoccum nigrum associated with leaf spot disease of cowpea (Vigna unguiculata) from India

Author(s):  
Yelandur Somaraju Deepika ◽  
Shivannegowda Mahadevakumar ◽  
Kestur Nagaraj Amruthesh ◽  
Nanjaiah Lakshmidevi
Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 284-284 ◽  
Author(s):  
S. Mahadevakumar ◽  
K. M. Jayaramaiah ◽  
G. R. Janardhana

Lablab purpureus (L.) Sweet (Indian bean) is an important pulse crop grown in arid and semi-arid regions of India. It is one of the most widely cultivated legume species and has multiple uses. During a September 2010 survey, we recorded a new leaf spot disease on L. purpureus in and around Mysore district (Karnataka state) with 40 to 80% disease incidence in 130 ha of field crop studied, which accounted for 20 to 35% estimated yield loss. The symptoms appeared as small necrotic spots on the upper leaf surface. The leaf spots were persistent under mild infection throughout the season with production of conidia in clusters on abaxial leaf surface. A Dueteromyceteous fungus was isolated from affected leaf tissues that were surface sterilized with 2% NaOCl2 solution then washed thrice, dried, inoculated on potato dextrose agar (PDA) medium, and incubated at 28 ± 2°C at 12 h alternate light and dark period for 7 days. The fungal colony with aerial mycelia interspersed with dark cushion-shaped sporodochia consists of short, compact conidiophores bearing large isodiametric, solitary, muricate, brown, globular to pear shaped conidia (29.43 to 23.92 μm). Fungal isolate was identified as Epicoccum sp. based on micro-morphological and cultural features (1). Further authenticity of the fungus was confirmed by PCR amplification of the internal transcribed spacer (ITS) region using ITS1/ITS4 universal primer. The amplified PCR product was purified, sequenced directly, and BLASTn search revealed 100% homology to Epicoccum nigrum Link. (DQ093668.1 and JX914480.1). A representative sequence of E. nigrum was deposited in GenBank (Accession No. KC568289.1). The isolated fungus was further tested for its pathogenicity on 30-day-old healthy L. purpureus plants under greenhouse conditions. A conidial suspension (106 conidia/ml) was applied as foliar spray (three replicates of 15 plants each) along with suitable controls. The plants were kept under high humidity (80%) for 5 days and at ambient temperature (28 ± 2°C). The appearance of leaf spot symptoms were observed after 25 days post inoculation. Further, the pathogen was re-isolated and confirmed by micro-morphological characteristics. E. nigrum has been reported to cause post-harvest decay of cantaloupe in Oklahoma (2). It has also been reported as an endophyte (3). Occurrence as a pathogen on lablab bean has not been previously reported. To our knowledge, this is the first report of the occurrence of E. nigrum on L. purpureus in India causing leaf spot disease. References: (1) H. L. Barnet and B. B. Hunter. Page 150 in: Illustrated Genera of Imperfect Fungi, 1972. (2) B. D. Bruten et al. Plant Dis. 77:1060, 1993. (3) L. C. Fávaro et al. PLoS One 7(6):e36826, 2012.


Plant Disease ◽  
2020 ◽  
pp. PDIS-04-20-0780
Author(s):  
Y. S. Deepika ◽  
S. Mahadevakumar ◽  
K. N. Amruthesh ◽  
N. Lakshmidevi

2017 ◽  
Vol 23 (2) ◽  
Author(s):  
S. A. FIRDOUSI

During the survey of the forest fungal disease, of Jalgaon district, two severe leaf spot diseases on Lannae coromandelica and ( Ougenia dalbergioides (Papilionaceae) were observed in Jalgaon, forest during July to September 2016-17. The casual organism was identified as Stigmina lanneae and Phomopsis sp. respectively1-4,7. These are first report from Jalgaon and Maharashtra state.


Author(s):  
Yiping Cui ◽  
Aitian Peng ◽  
Xiaobing Song ◽  
Baoping Cheng ◽  
Jinfeng Ling ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Plant Disease ◽  
2008 ◽  
Vol 92 (2) ◽  
pp. 318-318
Author(s):  
S. Zhao ◽  
G. Xie ◽  
H. Zhao ◽  
H. Li ◽  
C. Li

Snow lotus (Saussurea involucrata Karel. & Kir. ex Sch. Bip.) is an economically important medicinal herb increasingly grown in China in recent years. In June of 2005, a leaf spot disease on commercially grown plants was found in the QiTai Region, south of the Tianshan Mountain area of Xinjiang, China at 2,100 m above sea level. Disease incidence was approximately 60 to 70% of the plants during the 2006 and 2007 growing seasons. Initial symptoms appeared on older leaves as irregularly shaped, minute, dark brown-to-black spots, with yellow borders on the edge of the leaflet blade by July. As the disease progressed, the lesions expanded, causing the leaflets to turn brown, shrivel, and die. A fungus was consistently isolated from the margins of these lesions on potato dextrose agar. Fifty-eight isolates were obtained that produced abundant conidia in the dark. Conidia were usually solitary, rarely in chains of two, ellipsoid to obclavate, with 6 to 11 transverse and one longitudinal or oblique septum. Conidia measured 60 to 80 × 20 to 30 μm, including a filamentous beak (13 to 47 × 3.5 to 6 μm). According to the morphology, and when compared with the standard reference strains, the causal organism of leaf spot of snow lotus was identified as Alternaria carthami (1,4). Pathogenicity of the strains was tested on snow lotus seedlings at the six-leaf stage. The lower leaves of 20 plants were sprayed until runoff with conidial suspensions of 1 × 104 spores mL–1, and five plants sprayed with sterile distilled water served as controls. All plants were covered with a polyethylene bag, incubated at 25°C for 2 days, and subsequently transferred to a growth chamber at 25°C with a 16-h photoperiod. Light brown lesions developed within 10 days on leaflet margins in all inoculated plants. The pathogen was reisolated from inoculated leaves, and isolates were deposited at the Key Oasis Eco-agriculture Laboratory of Xinjiang Production and Construction Group, Xinjiang and the Institute of Biotechnology, Zhejiang University. No reports of a spot disease caused by A. carthami on snow lotus leaves have been found, although this pathogen has been reported on safflower in western Canada (3), Australia (2), India (1), and China (4). To our knowledge, this is the first report of a leaf spot caused by A. carthami on snow lotus in China. References: (1) S. Chowdhury. J. Indian Bot. Soc. 23:59, 1944. (2) J. A. G. Irwin. Aust. J. Exp. Agric. Anim. Husb. 16:921, 1976. (3) G. A. Petrie. Can. Plant Dis. Surv. 54:155, 1974. (4) T. Y. Zhang. J. Yunnan Agric. Univ.17:320, 2002.


Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 203-203
Author(s):  
S. T. Koike ◽  
S. A. Tjosvold ◽  
J. Z. Groenewald ◽  
P. W. Crous

Bells-of-Ireland (Moluccella laevis) (Lamiaceae) is an annual plant that is field planted in coastal California (Santa Cruz County) for commercial cutflower production. In 2001, a new leaf spot disease was found in these commercially grown cutflowers. The disease was most serious in the winter-grown crops in 2001 and 2002, with a few plantings having as much as 100% disease incidence. All other plantings that were surveyed during this time had at least 50% disease. Initial symptoms consisted of gray-green leaf spots. Spots were generally oval in shape, often delimited by the major leaf veins, and later turned tan. Lesions were apparent on both adaxial and abaxial sides of the leaves. A cercosporoid fungus having fasciculate conidiophores, which formed primarily on the abaxial leaf surface, was consistently associated with the spots. Based on morphology and its host, this fungus was initially considered to be Cercospora molucellae Bremer & Petr., which was previously reported on leaves of M. laevis in Turkey (1). However, sequence data obtained from the internal transcribed spacer region (ITS1, ITS2) and the 5.8S gene (STE-U 5110, 5111; GenBank Accession Nos. AY156918 and AY156919) indicated there were no base pair differences between the bells-of-Ireland isolates from California, our own reference isolates of C. apii, as well as GenBank sequences deposited as C. apii. Based on these data, the fungus was subsequently identified as C. apii sensu lato. Pathogenicity was confirmed by spraying a conidial suspension (1.0 × 105 conidia/ml) on leaves of potted bells-of-Ireland plants, incubating the plants in a dew chamber for 24 h, and maintaining them in a greenhouse (23 to 25°C). After 2 weeks, all inoculated plants developed leaf spots that were identical to those observed in the field. C. apii was again associated with all leaf spots. Control plants, which were treated with water, did not develop any symptoms. The test was repeated and the results were similar. To our knowledge this is the first report of C. apii as a pathogen of bells-of-Ireland in California. Reference: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Cornell University Press, Ithaca, New York, 1954.


Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 986-986
Author(s):  
J. Blagojević ◽  
S. Janjatović ◽  
M. Ignjatov ◽  
N. Trkulja ◽  
K. Gašić ◽  
...  

Plant Disease ◽  
2010 ◽  
Vol 94 (12) ◽  
pp. 1508-1508 ◽  
Author(s):  
X. Y. Chen ◽  
C. Sui ◽  
B. C. Gan ◽  
J. H. Wei ◽  
Y. K. Zhou

Patchouli (Pogostemon cablin (Blanco) Benth.) is mainly cultivated in Southeast Asia as a medicinal shrub and a source of patchouli oil used in perfumery. In 2008, a leaf spot disease was observed on patchouli plants grown on most farms (some farms had 99% incidence) in Wanning, the predominant cultivation location in the Hainan Province of China. The disease usually began at the tip of leaves, the main veins, or small veinlets. Severely irregular-shaped dark brown leaf spots expanded over 5 to 10 days, eventually causing infected leaves to abscise. The time from initial leaf lesions to abscission usually took 1 month. The disease was usually most severe in April and May, causing significant economic losses along with quality losses to patchouli oil extracted from leaves. To isolate the causal pathogen, diseased leaves were collected in August 2008 from a farm of the Hainan Branch Institute of Medicinal Plant Development in Wanning, surface sterilized in 75% ethanol for 1 min, transferred to potato dextrose agar (PDA), and incubated at 28°C for 14 days. Single-spore cultures of three isolates were obtained and identified as Corynespora cassiicola (Berk. & Curt.) Wei. on the basis of morphological and physiological features (1). Genomic DNA was extracted from all the cultures. The internal transcribed spacer (ITS) region of the rDNA was amplified using primers ITS1 (5′-TCCGATGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′). Amplicons were 546 bp (GenBank Accession No. HM145960) and had 99% nucleotide identity with the corresponding sequence (GenBank Accession No. GU138988) of C. cassiicola isolated from cassava (Manihot esculenta Crantz). To satisfy Koch's postulates, 50-day-old potted plants in a tent were sprayed until runoff with a spore suspension (1 × 106 spores/ml) prepared from 10-day-old cultures. Using this spray method, one isolate was inoculated separately onto nine leaves of three potted plants. The potted plants were covered with plastic bags to maintain high humidity for 48 h and then placed outside under natural environmental conditions (temperature 20 to 28°C). Another nine leaves of three potted plants, sprayed only with sterile water, served as noninoculated control plants. Leaf spot symptoms similar to those on diseased field plants appeared after 7 days on all inoculated plants. C. cassiicola was reisolated from all inoculated test plants. No symptoms were observed on the control plants. To our knowledge, this is the first report of C. cassiicola causing a leaf spot disease on patchouli in China. Other previous reports of this disease were from Cuba (2). This pathogen has also been reported previously to be economically important on a number of other hosts. On patchouli plants, more attention should be given to prevention and control measures to help manage this disease. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute: Kew, Surrey, England, 1971. (2) I. Sandoval et al. Cienc. Tec. Agric., Prot. Plant. 10:21, 1987.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 289-289 ◽  
Author(s):  
X. Wang ◽  
J. Wang ◽  
J. Gao ◽  
L. Yang

Schisandra chinensis (Turcz.) Baill is a perennial liana belonging to the Schisandra genus of the family Magnoliaceae, which is cultivated in China as an important medicinal plant. In the summer of 2008, we observed a previously unknown foliar disease on the schisandras in Jingyu and Antu counties and the cities of Ji'an and Hunchun in Jilin Province. Symptoms appeared on the apex, margin, and center of leaves. The infection initially manifested as pale brown, small, necrotic spots on the leaves. Subsequently, these lesions became grayish brown in the center and dark brown with slight protuberances at the margins. Finally, these lesions developed concentric rings with a clear boundary separating them from the healthy tissue, were round to elliptical or irregular in shape, and had a diameter of 3 to 5 mm. In severely infected leaves, these spots eventually covered the entire leaf. Black spots (pycnidia) were produced on the infected leaf tissues in a humid environment. Fungus from infected leaf tissues was isolated on potato dextrose agar. The cultures were initially pale brown and turned dark green with age. Embedded pycnidia were generally formed after 5 days. The pycnidia were agglutinating, globose to subglobose, and measured 60.0 to 212.0 × 33.6 to 268.0 μm. Abundant conidia (4.06 to 7.2 × 1.65 to 3.53 μm) exhibiting zero to three oil droplets were produced by an 8-day-old colony; these conidia were ovoid or ellipsoidal, colorless, and aseptate; they were similar to conidia of Phoma glomerata. The internal transcribed spacer (ITS) sequence of rDNA of the isolated pathogenic strain (PG11; GenBank Accession No. GU724511) had 100% identity to P. glomerata (GenBank Accession No. HM769279). Therefore, the pathogen was identified as P. glomerata (Corda) Wollenw. & Hochapfel on the basis of morphology and ITS sequence data. To validate Koch's postulates, schisandra leaves were spray inoculated with a 2.5 × 105 conidia/ml suspension of the isolated pathogen. An equal number of healthy plants were inoculated with sterile water (control). After inoculation, 10 plants were covered with plastic bags for 3 days and maintained in a growth chamber at 25°C. After 8 days, all inoculated plants showed symptoms identical to those observed on the schisandra leaves infected in the field, whereas the controls did not show any symptoms. Reisolation of the fungi from lesions of inoculated leaves confirmed that the causal agent was P. glomerata. Diseases caused by P. glomerata have been reported on some plants (1,2). However, to our knowledge, this is the first report of leaf spot disease caused by P. glomerata on S. chinensis in China as well as in the world. References: (1) J. S. Chohan et al. Trans. Br. Mycol. Soc. 75:509, 1980. (2) T. Thomidis et al. Eur. J. Plant Pathol. 131:171,2011.


Sign in / Sign up

Export Citation Format

Share Document