scholarly journals Incidence and distribution of Sweetpotato viruses and their implication on sweetpotato seed system in Malawi

Author(s):  
Willard Mbewe ◽  
Andrew Mtonga ◽  
Margret Chiipanthenga ◽  
Kennedy Masamba ◽  
Gloria Chitedze ◽  
...  

AbstractA survey was carried out in 19 districts to investigate the prevalence and distribution of sweetpotato virus disease (SPVD) and its implication on the sustainability of clean seed system in Malawi. A total of 166 leaf samples were collected and tested for the presence of 8 viruses using nitrocellulose membrane enzyme-linked immunosorbent assay (NCM-ELISA). SPVD foliar symptoms were observed in 68.42% of the surveyed districts. There were significant variations in disease incidence and severity (p < 0.001) among districts, with the highest incidence in Mulanje (28.34%). Average SPVD severity score was 3.05. NCM-ELISA detected sweet potato feathery mottle virus (SPFMV, 30.54%), sweet potato mild mottle virus (SPMMV, 31.14%), sweet potato mild speckling virus (SPMSV, 16.17%), sweet potato C-6 virus (SPC6V, 13.77%), sweet potato chlorotic stunt virus (SPCSV, 22.16%), sweet potato collusive virus (SPCV, 30.54%), sweet potato virus G (SPVG, 11.38%), cucumber mosaic virus (CMV, 7.78%) either in single or mixed infections. Data from this study indicate a significant SPVD occurrence in the country, and the consequence implications towards national sweetpotato seed system.

2019 ◽  
Vol 4 (1) ◽  
pp. 758-766
Author(s):  
E. B. Tibiri ◽  
K. Somé ◽  
J. S. Pita ◽  
F. Tiendrébéogo ◽  
M. Bangratz ◽  
...  

AbstractTo determine the effects of sweet potato feathery mottle virus (SPFMV), Sweet potato chlorotic stunt virus (SPCSV) and their co-infection on sweet potato yield, twelve sweet potato varieties were assessed in a hotspot area in Western Burkina Faso. The experiment was carried out in a randomized complete-block design with the twelve varieties in three replications. Data were collected on plant growth parameters, plant virus symptoms and yield parameters. Additional testing for selected sweet potato viruses was done using a nitrocellulose membrane enzyme-linked immunosorbent assay (NCM-ELISA) and RT-PCR. SPFMV and SPCSV were the viruses detected in this study. Varieties Djakani and Ligri were virus-free and had the highest average yields out of twelve sweet potato varieties assessed. Field monitoring indicated that 58% of plants were found to be virus-infected. The results suggest that severe symptoms were associated with sweet potato virus disease (SPVD) and yield reduction. However, the interaction of SPCSV with other viruses, which may result in synergistic negative effects on sweet potato yield and quality, needs further research.


Plant Disease ◽  
2003 ◽  
Vol 87 (4) ◽  
pp. 329-335 ◽  
Author(s):  
Settumba B. Mukasa ◽  
Patrick R. Rubaihayo ◽  
Jari P. T. Valkonen

Sweetpotato plants were surveyed for viruslike diseases and viruses in the four major agroecological zones of Uganda. Testing of 1,260 sweetpotato plants, of which 634 had virus-like symptoms, showed that virus disease incidence ranged from 2.7% (Soroti district, short grassland—savannah zone) to 20% (Mukono district, tall grass—forest mosaic zone). Sweet potato chlorotic stunt virus (SPCSV), Sweet potato feathery mottle virus (SPFMV), Sweet potato mild mottle virus (SPMMV), and sweet potato chlorotic fleck virus (SPCFV) were serologically detected and positive results confirmed by immunocapture reverse transcriptase polymerase chain reaction (IC-RT-PCR) and subsequent sequence analyses of the amplified fragments, except SPCFV, which lacked sequence information. SPCSV and SPFMV were detected in all the 14 districts surveyed, whereas SPMMV and SPCFV were detected in 13 and 8 districts, respectively. Logistic regression analysis revealed that SPCSV and SPFMV, SPFMV and SPMMV, and SPFMV and SPCFV more frequently occurred together than any other virus combinations or as single virus infections. Co-infections of SPCSV with SPFMV and/or SPMMV were associated with more severe and persistent symptoms than infections with each of the viruses alone. Several plants (11%) displaying viruslike symptoms did not react with the virus antisera used, suggesting that more viruses or viruslike agents are infecting sweetpotatoes in Uganda.


Plant Disease ◽  
2007 ◽  
Vol 91 (6) ◽  
pp. 669-676 ◽  
Author(s):  
Milton Untiveros ◽  
Segundo Fuentes ◽  
Luis F. Salazar

Co-infection of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus) with Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) results in sweet potato virus disease (SPVD), a synergistic disease that is widely distributed in the sweet potato (Ipomoea batatas) growing regions of the world. Since both SPCSV and SPFMV are common and often detected as part of multiple co-infections of severely diseased plants, the occurrence of synergistic interactions with other viruses was investigated. Data from this study show that SPCSV, but not SPFMV, can cause synergistic diseases in sweet potato with all viruses tested, including members of the genus Potyvirus (Sweet potato latent virus, Sweet potato mild speckling virus), Ipomovirus (Sweet potato mild mottle virus), Cucumovirus (Cucumber mosaic virus), and putative members of the genus Carlavirus (Sweet potato chlorotic fleck virus and C-6 virus). The synergism was expressed as an increase in the severity of symptoms, virus accumulation, viral movement in plants, and as an effect on yield of storage roots. The presence of a third different virus in plants affected with SPVD increased the severity of symptoms even further compared with SPVD alone. There was a positive correlation between increase in virus accumulation and symptom expression in double and triple SPCSV-associated co-infections. The epidemiological implications of the results are discussed.


2004 ◽  
Vol 100 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Richard W. Gibson ◽  
Valentine Aritua ◽  
Emmanuel Byamukama ◽  
Isaac Mpembe ◽  
James Kayongo

Plant Disease ◽  
2001 ◽  
Vol 85 (7) ◽  
pp. 801-801 ◽  
Author(s):  
R. Nono-Womdim ◽  
I. S. Swai ◽  
M. L. Chadha ◽  
K. Gebre-Selassie ◽  
G. Marchoux

African eggplant, or garden egg (Solanum aethiopicum) is an important vegetable in most sub-Saharan African countries. Since June 1997, viral symptoms, including mosaic, vein clearing, and stunting, have been observed on several crops of African eggplant cv. Tengeru White at a number of sites in the Arusha region of northern Tanzania. Field inspections revealed disease incidence ranging from 50 to 90%. During the same period, high populations of the green peach aphid Myzus persicae were observed in affected crops of African eggplant. These aphids were also found to reproduce in African eggplants. Flexuous, rodshaped virus-like particles, approximately 750 nm long and 12 nm wide, were found in electron microscope leaf dips from field samples of naturally affected African eggplants. The particle size suggested a species of Potyviridae. Thus, 20 field-infected samples of S. aethiopicum (randomly collected from four farms) were assayed in double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for the presence of Potato virus Y (PVY) and Pepper veinal mottle virus (PVMV), known to infect tomato and other solanaceous crops in the region (2). However, all samples gave negative results. Further DAS-ELISA were performed with the same extracts from naturally infected plants of S. aethiopicum with antisera directed against Tobacco etch virus, Tobacco vein mottling virus, Pepper mottle virus, and Chilli veinal mottle virus (ChiVMV). All 20 samples were positive only for ChiVMV. ChiVMV, a single-stranded RNA virus transmitted in a nonpersistent manner by several aphid species, is one of the most important viruses of pepper in Asia (1). To confirm DAS-ELISA results, an isolate of ChiVMV from African eggplant was transmitted by mechanical inoculations, resulting in disease on tobacco (Nicotiana tobacco cv. Xanthi nc), pepper (Capsicum annuum cv. Yolo Wonder), tomato (Lycopersicon esculentum cv. Tengeru 97), and African eggplant (S. aethiopicum cv. Tengeru White). Extracts from the inoculated plants tested positive for the presence of ChiVMV in DAS-ELISA. This mechanically transmitted isolate did not infect melon (Cucumis melo), cucumber (C. sativus), or cowpea (Vigna unguiculata), which are nonhosts of ChiVMV. To our knowledge, this is the first report of the natural occurrence of ChiVMV in African eggplant. References: (1) S. K. Green et al. PETRIA 9:332, 1999. (2) R. Nono-Womdim et al. J. S. Afr. Soc. Hort. Sci. 6:41–44, 1996.


Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 428-428 ◽  
Author(s):  
R. A. Valverde ◽  
G. Lozano ◽  
J. Navas-Castillo ◽  
A. Ramos ◽  
F. Valdés

Sweet potato chlorotic stunt virus (SPCSV), family Closteroviridae and Sweet potato feathery mottle virus (SPFMV), family Potyviridae are whitefly and aphid transmitted, respectively, which in double infections cause sweet potato virus disease (SPVD) that is a serious sweet potato (Ipomoea batatas Lam.) disease in Africa (2). During the past decade, sweet potato plants showing symptoms similar to SPVD have been observed in most areas of Spain. Nevertheless, not much information is available about the identity of the viruses infecting this crop in Spain. During the summer of 2002, sweet potato plants with foliar mosaic, stunting, leaf malformation, chlorosis, and ringspot symptoms were observed in several farms in Málaga (southern Spain) and Tenerife and Lanzarote (Canary Islands, Spain). Vine cuttings were collected from 21 symptomatic plants in Málaga and from eight plants on Lanzarote and six on Tenerife. Scions were grafted to the indicator hosts, Brazilian morning glory (I. setosa) and I. nil cv. Scarlett O'Hara. Three weeks after graft inoculations, all plants showed various degrees of mosaic, chlorosis, leaf malformation, and stunting. Four field collections (two from Málaga, one from Tenerife, and one from Lanzarote) with severe symptoms on I. setosa were selected for whitefly (Bemisia tabaci biotype Q) transmission experiments. Acquisition and transmission periods were 48 h. I. setosa was the acquisition host, and I. nil was the transmission host. For each isolate, groups of 10 whiteflies per I. nil plant were used. All I. nil plants used as transmission hosts with the four, field collections showed chlorosis and leaf malformation. Reverse-transcription polymerase chain reaction (RT-PCR) was performed on I. setosa (grafted with the four selected field collections) and I. nil plants (from the whitefly transmission experiments) with primers for the HSP70h gene of SPCSV. A 450-bp DNA fragment was obtained with all I. setosa and I. nil samples. Sequencing of the 450-bp DNA from two samples from Málaga yielded a nucleotide sequence with 98 to 99% similarity to the HSP70h gene of West African SPCSV isolates. Foliar samples from I. setosa, originally grafted with the 21 vine cuttings, were used for nitrocellulose membrane enzyme-linked immunosorbent assay (NCM-ELISA) testing with antiserum specific to SPFMV-RC (provided by J. Moyer, North Carolina State University, Raleigh). Positive control was sap extract from I. setosa that was infected with the common strain of SPFMV. Procedures for NCM-ELISA were as described (4). NCM-ELISA testing suggested that SPFMV was present in all samples. RT-PCR was conducted with degenerate primers POT1/POT2 (1). The nucleotide sequence that was amplified by these two primers spans part of the NIb protein and part of the coat protein gene of potyviruses. All samples yielded the expected 1.3-kb DNA. Sequencing of the RT-PCR products of two isolates from Malaga and sequence comparisons yielded nucleotide sequences with 97% similarity to two East African isolates (Nam 1 and Nam 3) of SPFMV (3). These results confirm the presence of SPCSV and SPFMV in sweet potato in Spain. References: (1) D. Colinet and J. Kummert. J. Virol. Methods 45:149, 1993. (2) R. W. Gibson et al. Plant Pathol. 47:95, 1998. (3) J. F. Kreuze et al. Arch. Virol. 145:567, 2000. (4) E. R. Souto et al. Plant Dis. 87:1226, 2003.


Author(s):  
Joseph Banda ◽  
Patrick Chiza Chikoti ◽  
Langa Tembo

Aim: The objective of this study was to determine the effect of sweet potato virus disease (SPVD) on the beta carotene content, tuber weight and vine weight of selected popular sweet potato genotypes. Study Design: The experiment was laid as a randomized complete block design (RCBD) with three replications. Place and Duration of Study: The experiment was conducted for two cropping seasons (2015/16 and 2016/17) at the Zambia Agriculture Research Institute in Chilanga district of Zambia. Methodology: The uninfected (control) genotypes of Kanga, Chiwoko and Chingovwa were evaluated alongside their SPVD infected genotypes. Genotypic infection was confirmed using molecular approaches, and data was collected at harvest on beta carotene content, tuber weight and vine weight. Results: The results showed that SPVD affects the yield and beta carotene content of sweet potato. Significant differences (P< .001) for yield performance and beta carotene were observed. The yield reduction in percentage across seasons for all genotypes between the uninfected and infected genotypes ranged from 77% to 79% and 67% to 76% for tuber weight and vine weight respectively. Only Chiwoko exhibited higher levels of beta carotene among the genotypes. However, the SPVD infected Chiwoko genotype compared to the uninfected treatment produced mean beta carotene content of 39.1 µg/g and 91.5 µg/g respectively. Conclusion: SPVD reduces the tuber weight, vine weight and beta carotene content in infected sweet potato genotypes.


Sign in / Sign up

Export Citation Format

Share Document