Recent progress on functional mesoporous materials as catalysts in organic synthesis

2020 ◽  
Vol 3 (3) ◽  
pp. 247-266 ◽  
Author(s):  
Yong Wu ◽  
Yuanteng Zhang ◽  
Jing Zhou ◽  
Dong Gu
2019 ◽  
Vol 23 (19) ◽  
pp. 2102-2121
Author(s):  
Hiroyuki Kawafuchi ◽  
Lijian Ma ◽  
Md Imran Hossain ◽  
Tsutomu Inokuchi

O-Acylated 2,2,6,6-tetramethylpiperidine-N-oxyls (abbr. O-AcylTEMPOs) are easily available and stable carboxylic derivatives, but their utility in organic synthesis is unexplored in contrast to analogues, such as the N-methoxy-N-methylamides, known as Weinreb amides. Especially, the O–N unit of the O-acylTEMPOs dictates a fairly electronwithdrawing character for the carbonyl function. This enhances the reactivity and stability of the resulting enolate ions. Accordingly, O-acylTEMPOs allow various transformations and this review encompasses seven topics: (1) Reactivity of O-acylTEMPOs towards nucleophiles and chemoselective transformations, (2) Reactivity of anionic species derived from O-acylTEMPOs, (3) E-Selective Knoevenagel condensation of acetoacetylTEMPOs and synthesis of furans, (4) Electrocyclization of 2,4-dienones derived from acetoacetic derivatives and 2-substituted enals, (5) Diastereoselective addition of amide anion to O-(2-alkenoyl)TEMPOs and β-amino acid synthesis, (6) Thermolysis of O-acylTEMPOs, and (7) Applications for Umpolung reactions using O-benzoylTEMPOs, useful for the electrophilic amination of alkenes and alkynes.


2022 ◽  
Author(s):  
Z.-W. Hou ◽  
H.-C. Xu

Nitrogen-centered radicals are versatile reactive intermediates for organic synthesis. This chapter describes recent progress in the electrochemical generation and reactions of nitrogen-centered radicals. Under electrochemical conditions, various nitrogen-centered radicals are generated through electrolysis of readily available precursors such as N—H bonds or azides. These reactive intermediates undergo addition reactions to π-systems or hydrogen-atom abstraction to generate various nitrogen-containing compounds.


2010 ◽  
Vol 63 (7) ◽  
pp. 987 ◽  
Author(s):  
Tsugio Kitamura

Many methods have been developed for generating benzyne. Convenient and reliable precursors extensively studied so far involve benzenediazonium-2-carboxylate and o-dihalobenzenes such as 1,2-bromofluorobenzene and 1,2-dibromobenzene. Recently, in addition to the above precursors, o-(trimethylsilyl)phenyl triflate has been put into frequent use for benzyne reactions, in which benzyne is efficiently generated under mild conditions using fluoride ion. Furthermore, o-(trimethylsilyl)phenyliodonium triflate has been developed as a more efficient benzyne precursor. This mini-review focusses on recent progress in benzyne chemistry from the viewpoint of organic synthesis. The methods for generating benzynes are classified by the conditions into four categories: basic conditions using strong bases, mild conditions using fluoride ion, thermolysis, and oxidation.


2020 ◽  
Vol 24 (17) ◽  
pp. 1897-1942
Author(s):  
Ran An ◽  
Mengbi Guo ◽  
Yingbo Zang ◽  
Hang Xu ◽  
Zhuang Hou ◽  
...  

Imines, versatile intermediates for organic synthesis, can be exploited for the preparation of diverse classes of biologically active benzazoles. Because of the special characteristics of the C=N bond, imines can be simultaneously used in the synthesis of 1,3-benzazoles and 1,2-benzazoles. With the development of imine synthesis, a variety of novel cascade reactions for benzazole synthesis have been reported in the last decade. Therefore, there is a strong need to elucidate the recent progress in the formation of various classes of benzazoles, including benzimidazoles, benzoxazoles, benzothiazoles, indazoles, and benzisoxazoles, via imines obtained by condensation reactions or oxidative/ redox coupling reactions


2020 ◽  
Vol 24 (14) ◽  
pp. 1582-1609
Author(s):  
Mohammad Dodangeh ◽  
Ali Ramazani ◽  
Malek-Taher Maghsoodlou ◽  
Armin Zarei ◽  
Sobhan Rezayati

Catalytic C-H activation is a powerful method for organic synthesis. In recent years, scientists have made great progress by developing transitional metals for catalyzing CH functionalization reaction. In this review, we summarized and highlighted recent progress in C-H activation with copper, cobalt, iron, manganese, and nickel as catalysts.


2020 ◽  
Vol 17 ◽  
Author(s):  
Feng Xu ◽  
Yu Hui

Abstract:: The Phosphorus-containing heterocycles are an important class of compounds in organic chemistry. Because of their potential application in many fields, especially the synthetic pesticides, medicine and catalyst, the Phosphorus-containing heterocycles have attracted continuous attention by organic synthesis scientists. The development of efficient and low-cost catalytic systems is great interest for construction heterocycles C–P bond. Usually, the Phosphorus-containing heterocycles is prepared via direct carbon–hydrogen (C–H) bond activation or pre-functionalized of heterocycles with carbon–hydrogen ( P-H) bond of phosphorus compounds reaction by metal-catalyzed. This review summarizes recent progress in the heterocycles C-P bond formation reactions by metal-catalyzed, which mainly focusing on the discussion of the reaction mechanism. Aims to provide efficient methods for the future synthesis and application in this field.


Sign in / Sign up

Export Citation Format

Share Document