Application of Readily Available Metals for C-H Activation

2020 ◽  
Vol 24 (14) ◽  
pp. 1582-1609
Author(s):  
Mohammad Dodangeh ◽  
Ali Ramazani ◽  
Malek-Taher Maghsoodlou ◽  
Armin Zarei ◽  
Sobhan Rezayati

Catalytic C-H activation is a powerful method for organic synthesis. In recent years, scientists have made great progress by developing transitional metals for catalyzing CH functionalization reaction. In this review, we summarized and highlighted recent progress in C-H activation with copper, cobalt, iron, manganese, and nickel as catalysts.

2019 ◽  
Vol 23 (19) ◽  
pp. 2102-2121
Author(s):  
Hiroyuki Kawafuchi ◽  
Lijian Ma ◽  
Md Imran Hossain ◽  
Tsutomu Inokuchi

O-Acylated 2,2,6,6-tetramethylpiperidine-N-oxyls (abbr. O-AcylTEMPOs) are easily available and stable carboxylic derivatives, but their utility in organic synthesis is unexplored in contrast to analogues, such as the N-methoxy-N-methylamides, known as Weinreb amides. Especially, the O–N unit of the O-acylTEMPOs dictates a fairly electronwithdrawing character for the carbonyl function. This enhances the reactivity and stability of the resulting enolate ions. Accordingly, O-acylTEMPOs allow various transformations and this review encompasses seven topics: (1) Reactivity of O-acylTEMPOs towards nucleophiles and chemoselective transformations, (2) Reactivity of anionic species derived from O-acylTEMPOs, (3) E-Selective Knoevenagel condensation of acetoacetylTEMPOs and synthesis of furans, (4) Electrocyclization of 2,4-dienones derived from acetoacetic derivatives and 2-substituted enals, (5) Diastereoselective addition of amide anion to O-(2-alkenoyl)TEMPOs and β-amino acid synthesis, (6) Thermolysis of O-acylTEMPOs, and (7) Applications for Umpolung reactions using O-benzoylTEMPOs, useful for the electrophilic amination of alkenes and alkynes.


2019 ◽  
Vol 91 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Wei Ren ◽  
Qiang Yang ◽  
Shang-Dong Yang

Abstract Phosphorus-radical participated difunctionalization reactions with unsaturated compounds have been recognized as powerful method for organic synthesis. This review covers our recent work on the application of transition metal catalyzed P-radical promoted difunctionalization for synthesis of organophosphorus compounds.


Author(s):  
Fangyuan Kang ◽  
Jie Yang ◽  
Qichun Zhang

Azaacenes have emerged as a new and important class of organic materials, and their synthetic strategies and applications as organic semiconductors have gained great progress in recent years. Generally, adopting...


Author(s):  
Alemayehu Gashaw ◽  
Dereje Kebebew Debeli ◽  
Meseret Chemeda

: The C-H and N-H functionalization of indoles is an interesting area of research that has a useful impact on organic synthesis due to the availability of chiral indole scaffolds in the discovery of drugs, synthetic bioactive compounds, and natural products. The chiral phosphoric acid catalysts (CPAs) have proven to be a powerful and versatile class of enantioselective organocatalysts. Many asymmetric syntheses of organic compounds have been carried out with these catalysts in C–C and C-N bond formation reactions, and great progress has been reported. By 2011, several reviews were published covering some important topics and recent achievements in this field. Therefore, in this review, the most recent advances, research breakthroughs with key examples involving mechanisms of CPA-catalyzed C-H and N-H functionalization of indoles to form central chirality via Friedel Crafts, Michael type, and rearrangement reactions were reviewed and reported.


2022 ◽  
Author(s):  
Z.-W. Hou ◽  
H.-C. Xu

Nitrogen-centered radicals are versatile reactive intermediates for organic synthesis. This chapter describes recent progress in the electrochemical generation and reactions of nitrogen-centered radicals. Under electrochemical conditions, various nitrogen-centered radicals are generated through electrolysis of readily available precursors such as N—H bonds or azides. These reactive intermediates undergo addition reactions to π-systems or hydrogen-atom abstraction to generate various nitrogen-containing compounds.


2020 ◽  
Vol 3 (3) ◽  
pp. 247-266 ◽  
Author(s):  
Yong Wu ◽  
Yuanteng Zhang ◽  
Jing Zhou ◽  
Dong Gu

MRS Bulletin ◽  
2009 ◽  
Vol 34 (11) ◽  
pp. 832-837 ◽  
Author(s):  
S.K. Streiffer ◽  
D.D. Fong

AbstractOver decades of effort, investigations of the intrinsic phase transition behavior of nanoscale ferroelectric structures have been greatly complicated by materials processing variations and by the common and uncontrolled occurrence of spacecharge, which interacts directly with the polarization and can obscure fundamental behavior. These challenges have largely been overcome, and great progress in understanding the details of this class of phase transitions has been made, largely based on advances in the growth of high-quality, epitaxial ferroelectric films and in the theory and simulation of ferroelectricity. Here we will discuss recent progress in understanding the ferroelectric phase transition in a particular class of model systems: nanoscale perovskite thin-film heterostructures. The outlook for ferroelectric technology based on these results is promising, and extensions to laterally confined nanostructures will be described.


2020 ◽  
Vol 18 (3) ◽  
pp. 391-399 ◽  
Author(s):  
Hongru Zhang ◽  
Xin Su ◽  
Kaiwu Dong

Hydrocyanation is a powerful method for the preparation of nitriles which are versatile building blocks for the synthesis of amines, acids and amides.


Sign in / Sign up

Export Citation Format

Share Document