cascade reactions
Recently Published Documents


TOTAL DOCUMENTS

1480
(FIVE YEARS 411)

H-INDEX

71
(FIVE YEARS 17)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Daniela Hartwig ◽  
Liane K. Soares ◽  
Luiz H. Dapper ◽  
José E. R. Nascimento ◽  
Eder João Lenardão

Abstract Carbon–carbon and carbon-heteroatom bond forming reactions are strategically employed for the generation of a variety of heterocyclic systems. This class of compounds represents the most general structural unit, present in many natural compounds. They are recognized for their valuable biologically properties and wide range of applications in medicinal, pharmaceutical, and other related fields of chemistry. This is an updated review on the use of dicarbonyl compounds under environmentally friendly conditions to access a series of heterocyclic structures, e.g., quinoxaline, quinazolinones, benzochalcogenazoles, indoles, among others. Synthetic protocols involving copper-catalyzed, multicomponent and cascade reactions, decarboxylative cyclization, recycling of CO2, and electrochemical approaches are presented and discussed.


Author(s):  
Gan Zhu ◽  
Ping Song ◽  
Jing Wu ◽  
Minglan Luo ◽  
Zhipeng Chen ◽  
...  

Nucleic acids underlie the storage and retrieval of genetic information literally in all living organisms, and also provide us excellent materials for making artificial nanostructures and scaffolds for constructing multi-enzyme systems with outstanding performance in catalyzing various cascade reactions, due to their highly diverse and yet controllable structures, which are well determined by their sequences. The introduction of unnatural moieties into nucleic acids dramatically increased the diversity of sequences, structures, and properties of the nucleic acids, which undoubtedly expanded the toolbox for making nanomaterials and scaffolds of multi-enzyme systems. In this article, we first introduce the molecular structures and properties of nucleic acids and their unnatural derivatives. Then we summarized representative artificial nanomaterials made of nucleic acids, as well as their properties, functions, and application. We next review recent progress on constructing multi-enzyme systems with nucleic acid structures as scaffolds for cascade biocatalyst. Finally, we discuss the future direction of applying nucleic acid frameworks in the construction of nanomaterials and multi-enzyme molecular machines, with the potential contribution that unnatural nucleic acids may make to this field highlighted.


2021 ◽  
Vol 12 (1) ◽  
pp. 360
Author(s):  
Sonia Askri ◽  
Amal Dbeibia ◽  
Chadlia Mchiri ◽  
Sarra Boudriga ◽  
Michael Knorr ◽  
...  

Three-component cascade reactions of (E)-3-arylidene-1-methyl-pyrrolidine-2,5-diones, L-valine and various isatin derivatives are described. A series of 17 spiropyrrolidine derivatives with wide structural complexity and diversity have been thus obtained in moderate to excellent yields under mild reaction conditions. The structure and stereochemistry of these N-heterocyclic cycloadducts has been established by spectroscopic techniques and unambiguously confirmed by a single-crystal X-ray diffraction analysis performed on one derivative. UV-visible spectra have been recorded for all new compounds. Furthermore, the synthesized N-heterocyclic compounds have been screened for their in vitro antibacterial and antifungal activities. Several derivatives exhibited moderate to good activities, comparable to those of the known standard drugs Amphotericin B and Tetracycline. Structural activity relationships (SARs) and molecular docking of the most promising derivatives into the binding sites of glucosamine 6-phosphate synthase (GlcN6P) and methionyl-trna-synthetase (1PFV) were also established. Furthermore, pharmacokinetic studies indicate that the heterocycles exhibit acceptable predictive ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties and good drug ability.


2021 ◽  
pp. 2104884
Author(s):  
Seong‐Min Jo ◽  
Jihye Kim ◽  
Ji Eun Lee ◽  
Frederik R. Wurm ◽  
Katharina Landfester ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Sisi Fan ◽  
Bin Ji ◽  
Yan Liu ◽  
Kexuan Zou ◽  
Zhijin Tian ◽  
...  

2021 ◽  
Vol 22 (24) ◽  
pp. 13503
Author(s):  
Tomohiro Komatsu ◽  
Kazuki Hishii ◽  
Michiko Kimura ◽  
Satoshi Amaya ◽  
Hiroaki Sakamoto ◽  
...  

With the rapid decline of fossil fuels, various types of biofuel cells (BFCs) are being developed as an alternative energy source. BFCs based on multi-enzyme cascade reactions are utilized to extract more electrons from substrates. Thus, more power density is obtained from a single molucule of substrate. In the present study, a bioanode that could extract six electrons from a single molecule of L-proline via a three-enzyme cascade reaction was developed and investigated for its possible use in BFCs. These enzymes were immobilized on the electrode to ensure highly efficient electron transfer. Then, oriented immobilization of enzymes was achieved using two types of self-assembled monolayers (SAMs). In addition, a microfluidic system was incorporated to achieve efficient electron transfer. The microfluidic system, in which the electrodes were arranged in a tooth-shaped comb, allowed for substrates to be supplied continuously to the cascade, which resulted in smooth electron transfer. Finally, we developed a high-performance bioanode which resulted in the accumulation of higher current density compared to that of a gold disc electrode (205.8 μA cm−2: approximately 187 times higher). This presents an opportunity for using the bioanode to develop high-performance BFCs in the future.


Sign in / Sign up

Export Citation Format

Share Document