Normal Form Transformations and Dysthe’s Equation for the Nonlinear Modulation of Deep-Water Gravity Waves

Author(s):  
Walter Craig ◽  
Philippe Guyenne ◽  
Catherine Sulem
Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 205
Author(s):  
Dan Lucas ◽  
Marc Perlin ◽  
Dian-Yong Liu ◽  
Shane Walsh ◽  
Rossen Ivanov ◽  
...  

In this work we consider the problem of finding the simplest arrangement of resonant deep-water gravity waves in one-dimensional propagation, from three perspectives: Theoretical, numerical and experimental. Theoretically this requires using a normal-form Hamiltonian that focuses on 5-wave resonances. The simplest arrangement is based on a triad of wavevectors K1+K2=K3 (satisfying specific ratios) along with their negatives, corresponding to a scenario of encountering wavepackets, amenable to experiments and numerical simulations. The normal-form equations for these encountering waves in resonance are shown to be non-integrable, but they admit an integrable reduction in a symmetric configuration. Numerical simulations of the governing equations in natural variables using pseudospectral methods require the inclusion of up to 6-wave interactions, which imposes a strong dealiasing cut-off in order to properly resolve the evolving waves. We study the resonance numerically by looking at a target mode in the base triad and showing that the energy transfer to this mode is more efficient when the system is close to satisfying the resonant conditions. We first look at encountering plane waves with base frequencies in the range 1.32–2.35 Hz and steepnesses below 0.1, and show that the time evolution of the target mode’s energy is dramatically changed at the resonance. We then look at a scenario that is closer to experiments: Encountering wavepackets in a 400-m long numerical tank, where the interaction time is reduced with respect to the plane-wave case but the resonance is still observed; by mimicking a probe measurement of surface elevation we obtain efficiencies of up to 10% in frequency space after including near-resonant contributions. Finally, we perform preliminary experiments of encountering wavepackets in a 35-m long tank, which seem to show that the resonance exists physically. The measured efficiencies via probe measurements of surface elevation are relatively small, indicating that a finer search is needed along with longer wave flumes with much larger amplitudes and lower frequency waves. A further analysis of phases generated from probe data via the analytic signal approach (using the Hilbert transform) shows a strong triad phase synchronisation at the resonance, thus providing independent experimental evidence of the resonance.


Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 103
Author(s):  
Philippe Guyenne ◽  
Adilbek Kairzhan ◽  
Catherine Sulem ◽  
Boyang Xu

An overview of a Hamiltonian framework for the description of nonlinear modulation of surface water waves is presented. The main result is the derivation of a Hamiltonian version of Dysthe’s equation for two-dimensional gravity waves on deep water. The reduced problem is obtained via a Birkhoff normal form transformation which not only helps eliminate all non-resonant cubic terms but also yields a non-perturbative procedure for surface reconstruction. The free surface is reconstructed from the wave envelope by solving an inviscid Burgers’ equation with an initial condition given by the modulational Ansatz. Particular attention is paid to the spatial form of this model, which is simulated numerically and tested against laboratory experiments on periodic groups and short-wave packets. Satisfactory agreement is found in all these cases.


Modern applications of water-wave studies, as well as some recent theoretical developments, have shown the need for a systematic and accurate calculation of the characteristics of steady, progressive gravity waves of finite amplitude in water of arbitrary uniform depth. In this paper the speed, momentum, energy and other integral properties are calculated accurately by means of series expansions in terms of a perturbation parameter whose range is known precisely and encompasses waves from the lowest to the highest possible. The series are extended to high order and summed with Padé approximants. For any given wavelength and depth it is found that the highest wave is not the fastest. Moreover the energy, momentum and their fluxes are found to be greatest for waves lower than the highest. This confirms and extends the results found previously for solitary and deep-water waves. By calculating the profile of deep-water waves we show that the profile of the almost-steepest wave, which has a sharp curvature at the crest, intersects that of a slightly less-steep wave near the crest and hence is lower over most of the wavelength. An integration along the wave profile cross-checks the Padé-approximant results and confirms the intermediate energy maximum. Values of the speed, energy and other integral properties are tabulated in the appendix for the complete range of wave steepnesses and for various ratios of depth to wavelength, from deep to very shallow water.


2020 ◽  
Vol 5 (8) ◽  
Author(s):  
Guillaume Michel ◽  
Félicien Bonnefoy ◽  
Guillaume Ducrozet ◽  
Gaurav Prabhudesai ◽  
Annette Cazaubiel ◽  
...  
Keyword(s):  

1994 ◽  
Vol 262 ◽  
pp. 265-291 ◽  
Author(s):  
Mansour Ioualalen ◽  
Christian Kharif

A numerical procedure has been developed to study the linear stability of nonlinear three-dimensional progressive gravity waves on deep water. The three-dimensional patterns considered herein are short-crested waves which may be produced by two progressive plane waves propagating at an oblique angle, γ, to each other. It is shown that for moderate wave steepness the dominant resonances are sideband-type instabilities in the direction of propagation and, depending on the value of γ, also in the transverse direction. It is also shown that three-dimensional progressive gravity waves are less unstable than two-dimensional progressive gravity waves.


Sign in / Sign up

Export Citation Format

Share Document