Water Waves
Latest Publications


TOTAL DOCUMENTS

52
(FIVE YEARS 52)

H-INDEX

3
(FIVE YEARS 3)

Published By Springer-Verlag

2523-3688, 2523-367x

Water Waves ◽  
2022 ◽  
Author(s):  
Bhavna ◽  
Atul Kumar ◽  
Ashish Kumar Pandey

Water Waves ◽  
2021 ◽  
Author(s):  
Diego Alonso-Orán

AbstractIn this paper, we derive new shallow asymptotic models for the free boundary plasma-vacuum problem governed by the magnetohydrodynamic equations which are vital when describing large-scale processes in flows of astrophysical plasma. More precisely, we present the magnetic analogue of the 2D Green–Naghdi equations for water waves under a weak magnetic pressure assumption in the presence of weakly sheared vorticity and magnetic currents. Our method is inspired by ideas for hydrodynamic flows developed in Castro and Lannes (2014) to reduce the three-dimensional dynamics of the vorticity and current to a finite cascade of two dimensional equations which can be closed at the precision of the model.


Water Waves ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 1-4
Author(s):  
Philippe Guyenne ◽  
David P. Nicholls ◽  
Catherine Sulem
Keyword(s):  

Water Waves ◽  
2021 ◽  
Author(s):  
M. D. Groves

AbstractIn the applied mathematics literature solitary gravity–capillary water waves are modelled by approximating the standard governing equations for water waves by a Korteweg-de Vries equation (for strong surface tension) or a nonlinear Schrödinger equation (for weak surface tension). These formal arguments have been justified by sophisticated techniques such as spatial dynamics and centre-manifold reduction methods on the one hand and variational methods on the other. This article presents a complete, self-contained account of an alternative, simpler approach in which one works directly with the Zakharov–Craig–Sulem formulation of the water-wave problem and uses only rudimentary fixed-point arguments and Fourier analysis.


Water Waves ◽  
2021 ◽  
Author(s):  
Maria Bjørnestad ◽  
Henrik Kalisch ◽  
Malek Abid ◽  
Christian Kharif ◽  
Mats Brun

AbstractIt is well known that weak hydraulic jumps and bores develop a growing number of surface oscillations behind the bore front. Defining the bore strength as the ratio of the head of the undular bore to the undisturbed depth, it was found in the classic work of Favre (Ondes de Translation. Dunod, Paris, 1935) that the regime of laminar flow is demarcated from the regime of partially turbulent flows by a sharply defined value 0.281. This critical bore strength is characterized by the eventual breaking of the leading wave of the bore front. Compared to the flow depth in the wave flume, the waves developing behind the bore front are long and of small amplitude, and it can be shown that the situation can be described approximately using the well known Kortweg–de Vries equation. In the present contribution, it is shown that if a shear flow is incorporated into the KdV equation, and a kinematic breaking criterion is used to test whether the waves are spilling, then the critical bore strength can be found theoretically within an error of less than ten percent.


Sign in / Sign up

Export Citation Format

Share Document