scholarly journals A unified correlation for predicting slug liquid holdup in viscous two-phase flow for pipe inclination from horizontal to vertical

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Ghassan H. Abdul-Majeed ◽  
Ali M. Al-Mashat
Measurement ◽  
2014 ◽  
Vol 49 ◽  
pp. 153-163 ◽  
Author(s):  
Zhao An ◽  
Jin Ningde ◽  
Zhai Lusheng ◽  
Gao Zhongke

2021 ◽  
pp. 1-13
Author(s):  
Ghassan H. Abdul-Majeed ◽  
Abderraouf Arabi ◽  
Gabriel Soto-Cortes

Summary Most of the existing slug (SL) to churn (CH) or SL to pseudo-slug (PS) transition models (empirical and mechanistic) account for the effect of the SL liquid holdup (HLS). For simplicity, some of these models assume a constant value of HLS in SL/CH and SL/PS flow transitions, leading to a straightforward solution. Other models correlate HLS with different flow variables, resulting in an iterative solution for predicting these transitions. Using an experimental database collected from the open literature, two empirical correlations for prediction HLS at the SL/PS and SL/CH transitions (HLST) are proposed in this study. This database is composed of 1,029 data points collected in vertical, inclined, and horizontal configurations. The first correlation is developed for medium to high liquid viscosity two-phase flow (μL > 0.01 Pa·s), whereas the second one is developed for low liquid viscosity flow (μL ≤ 0.01 Pa·s). Both correlations are shown to be a function of superficial liquid velocity (VSL), liquid viscosity (μL), and pipe inclination angle (θ). The proposed correlations in a combination with the HLS model of Abdul-Majeed and Al-Mashat (2019) have been used to predict SL/PS and SL/CH transitions, and very satisfactory results were obtained. Furthermore, the SL/CH model of Brauner and Barnea (1986) is modified by using the proposed HLST correlations, instead of using a constant value. The modification results in a significant improvement in the prediction of SL/CH and SL/PS transitions and fixes the incorrect decrease of superficial gas velocity (VSG) with increasing VSL. The modified model follows the expected increase of VSG for high VSL, shown by the published observations. The proposed combinations are compared with the existing transition models and show superior performance among all models when tested against 357 measured data from independent studies.


1983 ◽  
Vol 35 (05) ◽  
pp. 1003-1008 ◽  
Author(s):  
Hemanta Mukherjee ◽  
James P. Brill

Author(s):  
Ahmad Fazeli ◽  
Ali Vatani

Two-phase flow pipelines are utilized in simultaneous transferring of liquid and gas from reservoir fields to production units and refineries. In order to obtain the hydraulic design of pipelines, pressure drop and liquid holdup were calculated following pipeline flow regime determination. Two semi-empirical and mechanistical models were used. Empirical models e.g. Beggs & Brill, 1973, are only applicable in certain situations were pipeline conditions are adaptable to the model; therefore we used the Taitel & Dukler, 1976, Baker et al., 1988, Petalas & Aziz, 1998, and Gomez et al., 1999, mechanistical models which are practical in more extensive conditions. The FLOPAT code was designed and utilized which is capable of the determining the physical properties of the fluid by either compositional or non-compositional (black oil) fluid models. It was challenged in various pipeline positions e. g. horizontal, vertical and inclined. Specification of the flow regime and also pressure drop and liquid holdup could precisely be calculated by mechanistical models. The flow regimes considered in the pipeline were: stratified, wavy & annular (Segregated Flow), plug & slug (Intermittent Flow) and bubble & mist (Distributive Flow). We also compared output results against the Stanford Multiphase Flow Database which were used by Petalas & Aziz, 1998, and the effect of the flow rate, pipeline diameter, inclination, temperature and pressure on the flow regime, liquid holdup and pressure drop were studied. The outputs (flow regime, pressure drop and liquid holdup) were comparable with the existing pipeline data. Moreover, by this comparison one may possibly suggest the more suitable model for usage in a certain pipeline.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 51 ◽  
Author(s):  
Zeyad Almutairi ◽  
Fayez M. Al-Alweet ◽  
Yusif A. Alghamdi ◽  
Omar A. Almisned ◽  
Othman Y. Alothman

Experiments of gas–liquid flow in a circular pipe for horizontal and inclined positions (upward/downward) are reported. The characteristics of two-phase flow in terms of liquid holdup (ε(L)) and induced flow patterns are studied using three experimental techniques; time-averaged ε(L) from permittivity profiles using electrical capacitance tomography (ECT), instantaneous ε(L) using two fast-closing valves (TFCV), and high-speed camera images (HSCI) to capture/identify the formed flow patterns. Thus, this experimental setup enables the development of more well-defined flow patterns in gas–liquid two-phase flow and allows for multi-technique verification of the results. Taken from experimental measurements, a model is proposed to predict ε(L) for high and low situations. The correlations are a function of the hydrodynamic dimensionless quantities which provide hydrodynamic similarity. Regarding different pipe orientations, ε(L) predictions are comparable to ε(L) from experimental measurements with accepted accuracy: 88% of the predictions are within ±5–15% and 98% are below ±20%. The correlations also were validated by reported results and against correlations available in the literature and show higher prediction accuracy. It is confirmed that the kinematic similarity which is achieved by the gas–liquid velocity ratios and the inertial forces influence the flow pattern and the liquid holdup.


2021 ◽  
Author(s):  
Ligia Tornisiello ◽  
Francisco Bruno Xavier Teles ◽  
Paulo J. Waltrich

Abstract This paper presents a simplified model for transient two-phase flow in pipes of any inclinations, for slow transients. Such simplified model facilitates its use for real-time monitoring and machine leaning implementations. An improved correlation for the drift flux parameters is adopted in the model, which enables the utilization of the model for simulating transient flow scenarios for any pipe inclination and extends its applicability to a wider range of conditions. From the formulation, an equation has also been proposed to quantitatively define the application of the concept of slow transient. This equation indicates if a case of interest can be classified as a slow transient, which consequently implies that the use of the proposed model would likely provide accurate results. The model has been validated with experimental and field data, and also compared to the state-of-the-art commercial simulator for transient two-phase flow in pipes. The results showed an agreement within the range of ±30% for the holdup predictions for 65% of the scenarios, and an agreement within the range of ±30% for the pressure predictions for 82% of the scenarios considered in the validation data set. The model performance evaluation with data from a well in the GOM showed a maximum error of 30% in terms of predicted bottomhole pressure and an average error of 9% for the simulation of two years of transient flows.


Sign in / Sign up

Export Citation Format

Share Document