scholarly journals Wave propagation analysis of magnetic nanotubes conveying nanoflow

2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Reza Bahaadini ◽  
Ali Reza Saidi

Abstract According to the nonlocal strain gradient theory, wave propagation in magnetic nanotubes conveying magnetic nanoflow under longitudinal magnetic field is inspected. The nonlocal strain gradient Timoshenko beam model is coupled with magnetic nanoflow considering slip boundary condition to model fluid structure interaction. By applying Hamilton’s principle, the size-dependent governing equations of motion have been obtained. Calculation of the wave frequency as well as phase velocity has been carried out based on the harmonic solution. The influences of strain gradient length scale, nonlocal parameter, Knudsen number, longitudinal magnetic field and magnetic nanoflow on nanotubes’ wave propagation behavior have been examined. According to analytical results, the magnetic intensity related to the longitudinal magnetic field contributes significantly to increasing nanotubes’ wave frequency as well as phase velocity. Besides, the magnetic nanotubes conveying magnetic nanoflow predict the highest phase velocity and wave frequency. Also, the wave frequency decrease when the nonlocal parameter increases or the strain gradient length scale decreases. Moreover, an increase in fluid velocity reduces the wave frequency and phase velocity. Article highlights The nonlocal strain gradient Timoshenko beam model is considered. Wave propagation in magnetic nanotubes conveying magnetic nanoflow is studied. Longitudinal magnetic field and magnetic nanoflow with considering slip boundary condition is inspected. Wave frequency decrease when the nonlocal parameter increases or the strain gradient length scale decreases. Increase in fluid velocity reduces the wave frequency and phase velocity.

2017 ◽  
Vol 31 (08) ◽  
pp. 1750069 ◽  
Author(s):  
Yaxin Zhen ◽  
Lin Zhou

Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler–Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.


2019 ◽  
Vol 40 (12) ◽  
pp. 1695-1722 ◽  
Author(s):  
Lu Lu ◽  
Li Zhu ◽  
Xingming Guo ◽  
Jianzhong Zhao ◽  
Guanzhong Liu

AbstractIn this paper, a novel size-dependent functionally graded (FG) cylindrical shell model is developed based on the nonlocal strain gradient theory in conjunction with the Gurtin-Murdoch surface elasticity theory. The new model containing a nonlocal parameter, a material length scale parameter, and several surface elastic constants can capture three typical types of size effects simultaneously, which are the nonlocal stress effect, the strain gradient effect, and the surface energy effects. With the help of Hamilton’s principle and first-order shear deformation theory, the non-classical governing equations and related boundary conditions are derived. By using the proposed model, the free vibration problem of FG cylindrical nanoshells with material properties varying continuously through the thickness according to a power-law distribution is analytically solved, and the closed-form solutions for natural frequencies under various boundary conditions are obtained. After verifying the reliability of the proposed model and analytical method by comparing the degenerated results with those available in the literature, the influences of nonlocal parameter, material length scale parameter, power-law index, radius-to-thickness ratio, length-to-radius ratio, and surface effects on the vibration characteristic of functionally graded cylindrical nanoshells are examined in detail.


2019 ◽  
Vol 11 (07) ◽  
pp. 1950067 ◽  
Author(s):  
Mohammad Alakel Abazid

A nonlocal strain gradient theory (NSGT) is utilized to investigate the thermal buckling, free vibration and wave propagation in smart piezoelectromagnetic nanoplates in hygrothermal environments embedded in an elastic substrate. The main advantage of the NSGT over other continuum theories is that it contains both nonlocal parameter and material length scale parameter. The elastic substrate is modeled as Pasternak foundation model. According to the NSGT and the sinusoidal two-variable shear deformation plate theory, the governing equations of motion are derived involving the material parameters and hygrothermo-electromagnetic effects. The present solutions are checked through comparisons with those presented in the literature. Numerical results show the impacts of the nonlocal and gradient parameters, side-to-thickness ratio, hygrothermo-electromagnetic loads and substrate stiffness on the thermal buckling, frequencies and wave propagation in the smart nanoplates.


Author(s):  
Farzad Ebrahimi ◽  
Mohammad Reza Barati

This paper develops a nonlocal strain gradient plate model for vibration analysis of the graphene sheets under in-plane magnetic field and hygro-thermal environments. For more accurate analysis of the graphene sheets, the proposed theory contains two-scale parameters related to the nonlocal and strain gradient effects. The graphene sheet is modeled via a two-variable shear deformation plate theory needless of shear correction factors. Governing equations of a nonlocal strain gradient graphene sheet on elastic substrate are derived via Hamilton’s principle. Galerkin’s method is implemented to solve the governing equations for different boundary conditions. Effects of different factors such as moisture concentration rise, temperature rise, nonlocal parameter, length scale parameter, elastic foundation, and magnetic field on vibration characteristics of the graphene sheets are examined.


Author(s):  
N. D. Anh ◽  
D. V. Hieu

The nonlinear free vibration of embedded nanotubes under longitudinal magnetic field is studied in this paper. The governing equation for the nanotube is formulated by employing Euler – Bernoulli beam model and the nonlocal strain gradient theory. The analytical expression of the nonlinear frequency of the nanotube is obtained by using Galerkin method and the equivalent linearization method with the weighted averaging value. The accuracy of the obtained solution has been verified by comparison with the published solutions and the exact solution. The influences of the nonlocal parameter, material length scale parameter, aspect ratio, diameter ratio, Winkler parameter and longitudinal magnetic field on the nonlinear vibration responses of the nanotubes with pinned-pinned and clamped-clamped boundary conditions are investigated and discussed.


Sign in / Sign up

Export Citation Format

Share Document