Tree species diversity and biomass carbon assessment in undisturbed and disturbed tropical forests of Dibru-Saikhowa biosphere reserve in Assam North-East India

2020 ◽  
Vol 33 (3) ◽  
pp. 516-537
Author(s):  
Rajendra Kr. Joshi
Author(s):  
Uttam Thangjam ◽  
Pentile Thong ◽  
Uttam Kumar Sahoo ◽  
Jitendra Ahirwal ◽  
B. Malsawmkima ◽  
...  

2021 ◽  
Vol 129 ◽  
pp. 107915
Author(s):  
Erica R. Borges ◽  
Kyle G. Dexter ◽  
Marcela V. Pyles ◽  
Marcelo L. Bueno ◽  
Rubens M. dos Santos ◽  
...  

2019 ◽  
pp. 1-11
Author(s):  
Md. Delwar Hossain ◽  
Md. Ehsanul Haq ◽  
Manna Salwa ◽  
Md. Nazmul Islam Shekh ◽  
Aisha Siddika ◽  
...  

The study was conducted from January to April 2018 to estimate ecosystem carbon stock and tree species diversity at National Botanical Garden, Bangladesh. Transects line method square plots with a size of 20 m × 20 m were used. So altogether there were total eighty-three sample plots in National Botanical Garden. Above ground carbon (AGC) and below ground carbon (BGC) biomass stock was 192.67 and 31.34, respectively and soil organic carbon mean value of 27.52 Mg ha-1, 21.45 Mg ha-1 and 16.23 Mg ha-1, respectively for 0-10 cm depth, 10-20 cm and 20-30 cm depth. The average number of tree species per hectare was 128 with a mean value of each plot 3.00 to 9.00 species. The average number of trees in National Botanical Garden (233 tree ha-1), basal area (21.45 m2 ha-1) and mean DBH (39.86 cm). Tree diversity range from 0.25 to 1.86 and the mean value of (0.93 ± 0.14) in National Botanical Garden. A relationship such as biomass carbon with the basal area, mean DBH, stem density and tree diversity were estimated. Among these, the relationship between basal area and biomass carbon showed positive significant correlation. Therefore, the results of the study confirmed that the selected botanical garden can serve as a valuable ecological tool in terms of carbon sequestration, diverse tree species and storage of soil organic carbon.


2014 ◽  
Vol 6 (4) ◽  
pp. 448-453 ◽  
Author(s):  
Dumpa PREMAVANI ◽  
Maradana TARAKESWARA NAIDU ◽  
Malleboyina VENKAIAH

The tree species diversity and population structure were studied in four stands of the tropical forests in the north-central Eastern Ghats, based on tree inventories conducted on four 1-ha plots. In the four independent plots, two 5 x 1000 m transects were established and all trees with ≥ 15 cm girth at breast height were enumerated. The density, frequency, basal area and IVI along with diversity indices viz. Shannon index, species richness, equitability and species dominance were computed to see the variation in tree community. A total of 92 species representing 73 genera under 40 families of angiosperms were recorded. Tree species richness was as low as 34 species per hectare plot in Geddapalli to as high as 48 species in Koruturu. Tree density ranged from 360 stems per hectare in plot Geddapalli to 526 stems in plot Chintapalli and that of total basal area from 16.31 m2 ha-1 in Koruturu to 31.15 m2 ha-1 in Chintapalli. The number of species and stems decreased from the smaller to the largest girth classes. The tree inventories of the study area when compared to those of the other tropical forests showed great differences in density and basal area. This may probably be due to differences in geography and annual rainfall patterns. The information on tree species structure and function can provide baseline information for conservation of the biodiversity.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 483
Author(s):  
Elmugheira M. I. Mohammed ◽  
Elhag A. M. H. ◽  
Patrick A. Ndakidemi ◽  
Anna C. Treydte

Anthropogenic disturbances, such as illegal harvesting and livestock browsing, often affect natural forests. However, the resulting tree species diversity, composition, and population structure have rarely been quantified. We assessed tree species diversity and importance value indices and, in particular, Balanites aegyptiaca (L.) Del. population structure, across 100 sample plots of 25 m × 40 m in disturbed and non-disturbed sites at the Dinder Biosphere Reserve, Sudan, from April 2019 to April 2020. We found that the tree species diversity in non-disturbed sites was more than double that of disturbed sites (p < 0.001, T = 32.6), and seedlings and saplings comprised more than 72% of the entire tree population (F2,48 = 116.4, p = 0.034; F2,48 = 163.2, p = 0.021, respectively). The tree density of B. aegyptiaca in the disturbed site was less than half that of the non-disturbed site (p = 0.018, T = 2.6). Balanites aegyptiaca was seven times more aggregated in disturbed sites compared to more regularly spaced trees in non-disturbed sites (T = 39.3 and p < 0.001). The poor B. aegyptiaca population status of the disturbed site shows that the conservation of this vulnerable species is essential for a sustainable management and utilization scheme.


2016 ◽  
Vol 27 (4) ◽  
pp. 739-748 ◽  
Author(s):  
Nobuo Imai ◽  
Hiromitsu Samejima ◽  
Malcom Demies ◽  
Atsushi Tanaka ◽  
John Baptist Sugau ◽  
...  

2013 ◽  
Vol 41 (1) ◽  
pp. 64-72 ◽  
Author(s):  
MICHAEL DAY ◽  
CRISTINA BALDAUF ◽  
ERVAN RUTISHAUSER ◽  
TERRY C. H. SUNDERLAND

SUMMARYTropical forests are both important stores of carbon and among the most biodiverse ecosystems on the planet. Reducing emissions from deforestation and degradation (REDD) schemes are designed to mitigate the impacts of climate change, by conserving tropical forests threatened by deforestation or degradation. REDD schemes also have the potential to contribute significantly to biodiversity conservation efforts within tropical forests, however biodiversity conservation and carbon sequestration need to be aligned more closely for this potential to be realized. This paper analyses the relationship between tree species diversity and above-ground biomass (AGB) derived from 1-ha tree plots in Central African rainforests. There was a weakly significant correlation between tree biomass and tree species diversity (r = 0.21, p = 0.03), and a significantly higher mean species diversity in plots with larger AGB estimates (M = 44.38 species in the top eight plots, compared to M = 35.22 in the lower eight plots). In these Central African plots, the relationship between tree species diversity and AGB appeared to be highly variable; nonetheless, high species diversity may often be related to higher biomass and, in such cases, REDD schemes may enhance biodiversity by targeting species diverse forests.


Sign in / Sign up

Export Citation Format

Share Document