Dichlorination in a circulating fluidized-bed incinerator for municipal solid waste incineration system

2019 ◽  
Vol 1 (3) ◽  
pp. 207-212
Author(s):  
Yaming Cai ◽  
Zengyi Ma ◽  
Jianhua Yan ◽  
Yike Zhang ◽  
Zhe Chen ◽  
...  
Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 141
Author(s):  
Zhengzhen Yao ◽  
Zhonghui Xu ◽  
Qin Shuai ◽  
Xiaoyue Chen ◽  
Zao Jiang ◽  
...  

This study aims to explore the solidification performance of municipal solid waste incineration fly ash (MSWIFA) through co-mechanical treatment with circulation fluidized bed combustion fly ash (CFBCFA). The mineral characterization, physical properties, and leaching resistance of the solidified bodies are investigated by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry-differential thermal analysis (TG-DTA), compressive strength, porosity, and leaching test, respectively. C–S–H, ettringite (AFt), and Friedel’s salt (FS) are the predominant hydrate products in the CFBCFA based solidified bodies, which are similar to the cement based solidified bodies. However, CFBCFA based solidified bodies exhibit higher compressive strength (36.7 MPa) than cement based solidified bodies (11.28 MPa), attributing to the three reasons: lower porosity and more compact internal structure of CFBCFA based solidified bodies; large amounts of Ca(OH)2 originating from MSWIFA are conducive to promoting the hydration reaction extent and compressive strength of the CFBCFA based solidified bodies; excessive Ca(OH)2 would cause compressive strength deterioration for the cement based solidified bodies. The heavy metals (Zn, Cu, Cr, Cd, and Pb) concentrations in the extraction solution of the CFBCFA based solidified bodies are far below the requirements of Chinese National Standard GB 5085.3-2007. The solidification of MSWIFA through co-mechanical treatment could be an ideal substitute for cement solidification technology.


2020 ◽  
Vol 22 (3) ◽  
pp. 836-850
Author(s):  
Astryd Viandila Dahlan ◽  
Hiroki Kitamura ◽  
Yu Tian ◽  
Hirofumi Sakanakura ◽  
Takayuki Shimaoka ◽  
...  

Author(s):  
Jun Li ◽  
Lixian Wang ◽  
Yong Chi ◽  
Zhaozhi Zhou ◽  
Yuanjun Tang ◽  
...  

The production of clean and efficient energy from municipal solid waste (MSW) is extremely urgent matter due to an increasing energy demand and environmental concerns. In this study, a high steam parameter (520 °C, 7.9 MPa) circulating fluidized bed (CFB) MSW incineration system, equipped with a mechanical, biological treatment and external heat exchanger systems, was introduced and a comparative study with a typical mechanical grate (450 °C, 5.3 MPa) incineration system and conventional CFB (485 °C, 5.3 MPa) incineration system was carried out from a life-cycle, environmental and exergetic perspective which could assess different energy and material outputs based on real operating data. Moreover, the potential system optimization of this advanced CFB system was proposed. The results showed that the advanced CFB system was more environmentally friendly and resource-efficient than conventional MSW incineration systems. The recovery of material should be given priority over energy recovery. According to the assessment of the environment, and energy and material recovery, a process improvement with an incinerated refuse-derived fuel and a semi-compost produced by MBT as a soil conditioner was highly recommended.


2021 ◽  
Vol 47 (2) ◽  
pp. 393-405
Author(s):  
Markku Nikku ◽  
Mingxiu Zhan ◽  
Kari Myöhänen ◽  
Jouni Ritvanen ◽  
Xiaodong Li

Currently waste incineration is a widely used method of waste management in China. Effective incineration requires understanding and tools to analyze the incineration process leading to good incinerator performance and efficiency as well as lower emissions. In this work, a Chinese circulating fluidized bed (CFB) incinerator firing municipal solid waste (MSW) and coal is modeled with a three-dimensional CFB furnace model to evaluate the incineration process. First, the modeling results are verified with measurement data from the incinerator. Then, the furnace model is applied in the simulation of a case with more dry MSW without coal. The objective of the research is to provide insight and increase understanding of the MSW incineration process. The simulation case of MSW with the lower moisture content highlights the possible reductions of fossil carbon emissions associated with the utilization of coal. To achieve this, a moderate reduction in the moisture content of MSW is required. A comparison between the MSW and coal versus only the MSW shows minor differences in the performance of the incinerator. Utilization of modeling in incinerator studies can aid in development of more efficient CFB incinerators, improving the waste management and reducing the utilization of fossil coal.


2021 ◽  
Vol 21 (7) ◽  
pp. 3764-3768
Author(s):  
Sangjae Jeong ◽  
Taeho Lee ◽  
Se Jeong Lim ◽  
Young-Kwon Park ◽  
Seungdo Kim ◽  
...  

The demand for alternative energy is increasing rapidly because of global warming and the depletion of fossil fuels. Gasification is a technology that produces gaseous fuels through the incomplete combustion of waste or biomass. The introduction of a catalyst during gasification may increase the production of H2 and reduce tar formation. In this study, the catalytic gasification of rice hulls was carried out using a fluidized gasifier. To improve the gas yield and reduce tar, municipal solid waste incineration bottom ash (IBA) having nanoporosity was introduced as a substitute for the fluidized bed material. Gasification was carried out at 800 °C, and the flow materials were silica sand, dolomite, and incineration bottom ash. The equivalence ratio, which is the ratio of oxygen supplied to oxygen required for complete combustion, was set to 0.3. The application of alternate fluidized bed materials (dolomite and incineration bottom ash) was effective in improving the hydrogen yield and tar reduction. This was attributed to the high Ca and Mg contents in dolomite and incineration bottom ash. Therefore, it is expected that IBA can be utilized as a catalytic fluidized bed material to replace silica sand.


Sign in / Sign up

Export Citation Format

Share Document