refuse derived fuel
Recently Published Documents


TOTAL DOCUMENTS

566
(FIVE YEARS 117)

H-INDEX

27
(FIVE YEARS 6)

2022 ◽  
Vol 227 ◽  
pp. 107129
Author(s):  
Pu Yang ◽  
Dening Jia ◽  
Bingcheng Lin ◽  
Xiuzheng Zhuang ◽  
Xiaotao Bi

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Bogusław Kusz ◽  
Dariusz Kardaś ◽  
Łukasz Heda ◽  
Bartosz Trawiński

One of the technical limitations of refuse-derived fuel (RDF) pyrolysis is the high content of tar in its gas products. In order to resolve this problem, a two-stage RDF pyrolysis with a catalyst based on char from RDF pyrolysis is proposed. This paper presents the results of municipal waste pyrolysis beginning in an oven heated to 480 °C and ending with catalytic tar cracking carried out in the temperature range from 800 to 1000 °C. Thermal and catalytic pyrolysis with a char catalyst containing a minimum of 6% Fe resulted in increases in the CO and H2 contents in gas products and decreases in CO2 and CH4. At 1000 °C, the mass ratio of gaseous products to liquids was greater than 6. The residence time of the gases in the catalytic zone was about 3–5 s. The reactor was a good source of hydrogen and carbon monoxide.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2255
Author(s):  
Taís Eliane Marques ◽  
York Castillo Santiago ◽  
Maria Luiza Grillo Renó ◽  
Diego Mauricio Yepes Maya ◽  
Leandro Alcoforado Sphaier ◽  
...  

In this work, an energetic and environmental evaluation of the electricity generation process through refuse-derived fuel (RDF) gasification coupled to a gas microturbine (GM) was performed. Two scenarios are considered with different gasification agents in RDF gasification modeling: air and air enriched with oxygen. A thermodynamic chemical equilibrium approach was used to analyze the gasification parameters. The results of RDF gasification indicate a maximum value of syngas low heating value (LHV) equal to 8.0 MJ/Nm3, obtained for an equivalence ratio of 0.3. The use of these syngas in the gas microturbine produces 79.6 kW of electrical power. For the environmental evaluation of gasification and electricity generation systems, the Life Cycle Assessment methodology was employed. The calculated environmental impacts indicate that the emission of contaminants from fossil fuel combustion (in the stage of transport by heavy load vehicles) and that the electricity consumption for equipment operation (in the stage of municipal solid waste pretreatment) contributes to environmental pollution. On the other hand, electricity generation through GM presented lower environmental impact for all analyzed categories, suggesting that the electricity generation from gas obtained from gasification could be a viable option for thermochemical conversion of RDF and its subsequent energetic use.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7051
Author(s):  
Kacper Świechowski ◽  
Christian Zafiu ◽  
Andrzej Białowiec

The quantity of biodegradable plastics is increasing steadily and taking a larger share in the residual waste stream. As the calorific value of biodegradable plastic is almost two-fold lower than that of conventional ones, its increasing quantity decreases the overall calorific value of municipal solid waste and refuse-derived fuel which is used as feedstock for cement and incineration plants. For that reason, in this work, the torrefaction of biodegradable waste, polylactic acid (PLA), and paper was performed for carbonized solid fuel (CSF) production. In this work, we determined the process yields, fuel properties, process kinetics, theoretical energy, and mass balance. We show that the calorific value of PLA cannot be improved by torrefaction, and that the process cannot be self-sufficient, while the calorific value of paper can be improved up to 10% by the same process. Moreover, the thermogravimetric analysis revealed that PLA decomposes in one stage at ~290–400 °C with a maximum peak at 367 °C, following a 0.42 reaction order with the activation energy of 160.05 kJ·(mol·K)−1.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7711
Author(s):  
Sławomir Kasiński ◽  
Marcin Dębowski ◽  
Maria Olkowska ◽  
Marcin Rudnicki

The aim of this study was to determine the role of an installation based on biodrying of municipal waste in a Circular Economy by taking into account the quantitative and qualitative changes in its selectively collected waste stream. As a case study, the Mechanical-Biological municipal waste treatment installation in Olsztyn, Poland, was selected, which is equipped with a separate section for valorizing the selectively collected waste stream. The scope of the work included a complete mass balance of the waste treatment plant, an assessment of the technological efficiency of the municipal waste biodrying installation, and determination of the changes in the main waste from 2016 to 2020. This paper proposes an empirical method for estimating process loss during biodrying and provides many technological results. The average process loss was 23.47%, and on average, 88.9% of the waste produced by biodrying consisted of the Refuse-Derived Fuel fraction. The recovery of commercial assortments from selectively collected waste increased from 84.82% in 2016 to 89.26% in 2020. Considering the current morphology of municipal waste in this region, the maximum share of waste subjected to material and organic recycling processes in the analyzed region could be increased to around 60%, which indicates that Circular Economy targets can be achieved. This work should provide a compendium of information for countries implementing a Circular Economy.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7502
Author(s):  
Katarzyna Śpiewak ◽  
Grzegorz Czerski ◽  
Karol Bijak

This research aimed to assess the process conditions, temperature and pressure, on the gasification of alternative refuse-derived fuel (RDF) in the atmosphere of steam and carbon dioxide on a laboratory scale using a fixed bed reactor. For this reason, the selected RDF were analysed, including proximate and ultimate analysis, mercury content and ash composition. After that, isothermal gasification measurements using the thermovolumetric method were performed under various temperatures (700, 750, 800, 900 °C) and pressures (0.5, 1, 1.5 MPa), using steam and carbon dioxide as gasifying agents. The obtained results showed that in the entire analysed range, the increase in temperature positively affect both the steam and CO2 gasification of RDF. The formation rates of main components (H2 and/or CO) of the resulting gas, as well as yields of gas components and maximum carbon conversion degrees increase. However, this positive effect was the greater, the lower the process pressure was. In turn, the effect of pressure was more complex. In the case of RDF steam gasification, an increase in pressure had a negative effect on the process, while when using carbon dioxide as a gasifying agent, an improvement of most analysed parameters was observed; however, only at low temperatures, 700–750 °C.


Sign in / Sign up

Export Citation Format

Share Document