scholarly journals Driver Safety Development: Real-Time Driver Drowsiness Detection System Based on Convolutional Neural Network

2020 ◽  
Vol 1 (5) ◽  
Author(s):  
Maryam Hashemi ◽  
Alireza Mirrashid ◽  
Aliasghar Beheshti Shirazi
Author(s):  
Charan M

We propose a Driver drowsiness detection system, the purposes of which are to prevent from dangerous cause and to avoid accidents. Since all the processes on image recognition performed on a smart phone, the system does not need to send images to a server and runs on an android smart phone in a real-time way. Automatic image-based recognition is a particularly challenging task. Traditional image analysis approaches have achieved low classification accuracy in the past, whereas deep learning approaches without human supervision real-time drowsiness detection. This model classifies whether the person’s eyes are opened or closed. To recognize the face, a user should have to adjust camera such a way that it covers his face first, and then the system starts recognition within the indicated bounding boxes. In addition, the system estimates the actions of the person. This recognition process is performed repeatedly about every second. We will implement this system as Web application effectively for real-time recognition.


2021 ◽  
Author(s):  
Jonathan Flores-Monroy ◽  
Mariko Nakano-Miyatake ◽  
Gabriel Sanchez-Perez ◽  
Hector Perez-Meana

Author(s):  
Sara Houshmand ◽  
Reza Kazemi ◽  
Hamed Salmanzadeh

A significant number of fatal accidents are caused by drowsy drivers worldwide. Driver drowsiness detection based on electroencephalography (EEG) signals has high accuracy and is known as a reference method for evaluating drowsiness. Among brain waves, EEG alpha spindle activity is a silent feature of decreasing alertness levels. In this paper, based on the detection of EEG alpha spindles, a novel driver drowsiness detection method is presented. The EEG spindles were detected using Continuous Wavelet Transform (CWT) analysis and the Morlet function. To do so, the signal is divided into 30-s epochs, and the observer rating of drowsiness determines the drowsiness level in each epoch. Tests were conducted on 17 healthy males in a driving simulator with a monotonous driving scenario. The Convolutional Neural Network (CNN) is used for classifying EEG signals and automatically learns features of the early drowsy state. The subject-independent classification results for single-channel P4 show 94% accuracy.


Sign in / Sign up

Export Citation Format

Share Document