state detection
Recently Published Documents


TOTAL DOCUMENTS

536
(FIVE YEARS 175)

H-INDEX

25
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Shaoning Lv ◽  
Clemens Simmer ◽  
Yijian Zeng ◽  
Jun Wen ◽  
Yuanyuan Guo ◽  
...  

Abstract. Knowing the Freeze-Thaw (FT) state of the land surface is essential for many aspects of weather forecasting, climate, hydrology, and agriculture. Near-surface air temperature and land surface temperature are usually used in meteorology to infer the FT-state. However, the uncertainty is large because both temperatures can hardly be distinguished from remote sensing. Microwave L-band emission contains rather direct information about the FT-state because of its impact on the soil dielectric constant, which determines microwave emissivity and the optical depth profile. However, current L band-based FT algorithms need reference values to distinguish between frozen and thawed soil, which are often not known sufficiently well. We present a new FT-state detection algorithm based on the daily variation of the H-polarized brightness temperature of the SMAP L3c FT global product for the northern hemisphere, which is available from 2015 to 2021. The exploitation of the daily variation signal allows for a more reliable state detection, particularly during the transitions periods, when the near-surface soil layer may freeze and thaw on sub-daily time scales. The new algorithm requires no reference values; its results agree with the SMAP FT state product by up to 98 % in summer and up to 75 % in winter. Compared to the FT state inferred indirectly from the 2-m air temperature of the ERA5-land reanalysis, the new FT algorithm has a similar performance as the SMAP FT product. The most significant differences occur over the midlatitudes, including the Tibetan plateau and its downstream area. Here, daytime surface heating may lead to daily FT transitions, which are not considered by the SMAP FT state product but are correctly identified by the new algorithm. The new FT algorithm suggests a 15 days earlier start of the frozen-soil period than the ERA5-land’s 2-m air temperature estimate. This study is expected to extend L-band microwave remote sensing data for improved FT detection.


Author(s):  
Zhong Wu ◽  
Qi Wang ◽  
Xingpu Cai ◽  
Jianfeng Dai ◽  
Xuefei Liu ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1536
Author(s):  
Chengjiang Zhou ◽  
Yunhua Jia ◽  
Haicheng Bai ◽  
Ling Xing ◽  
Yang Yang

Aiming at the disadvantages of low trend, poor characterization performance, and poor anti-noise performance of traditional degradation features such as dispersion entropy (DE), a fault detection method based on sliding dispersion entropy (SDE) is proposed. Firstly, a sliding window is added to the signal before extracting the DE feature, and the root mean square of the signal inside the sliding window is used to replace the signal in the window to realize down sampling, which enhances the trend of DE. Secondly, the hyperbolic tangent sigmoid function (TANSIG) is introduced to map the signals to different categories when extracting the DE feature, which is more in line with the signal distribution of mechanical parts and the monotonicity of the degradation feature is improved. For noisy signal, the introduction of locally weighted scatterplot smoothing (LOWESS) can remove the burrs and fluctuations of the SDE curve, and the anti-noise performance of SDE is improved. Finally, the SDE state warning line is constructed based on the 2σ criterion, which can determine the fault warning point in time and effectively. The state detection results of bearing and check valve show that the proposed SDE improves the trend, monotonicity, and robustness of the state tracking curve, and provides a new method for fault state detection of mechanical parts.


2021 ◽  
pp. 147592172110575
Author(s):  
Jinxiu Qu ◽  
Changquan Shi ◽  
Jinzhu Guo ◽  
Xiaowei Shi ◽  
Jiaqi Huang ◽  
...  

Viscoelastic sandwich structure plays an important role in mechanical equipment, nevertheless viscoelastic material inevitably suffers from gradual aging. For guaranteeing the operation safety of mechanical equipment, it is urgent to perform the aging state detection of viscoelastic sandwich structure with vibration response signal analysis. However, the structural vibration response signal is non-stationary and its variation caused by the structural aging state change is very puny, and the abnormal state samples is lacking. The vibration-based structural aging state detection has become a challenging task. Therefore, a novel method based on redundant second generation wavelet packet transform (RSGWPT) and fuzzy support vector data description (FSVDD) is proposed for this task. For extracting sensitive aging feature information, RSGWPT is introduced to process the structural vibration response signal, and multiple energy features are extracted from the frequency-band signals to reflect structural aging state change. For accurate and automatic aging state identification, by fusing fuzzy theory, FSVDD only uses the normal state samples for training and can identify the abnormal severity degrees is developed to identify the structural aging states. The proposed method is applied on a viscoelastic sandwich structure to validate its effectiveness, and different structural aging states are created through the accelerated aging of viscoelastic material. The analysis results show the outstanding performance of the proposed method.


2021 ◽  
Author(s):  
Changhao Ge ◽  
Shubo Yang ◽  
Wenjian Sun ◽  
Yang Luo ◽  
Chunbo Luo

Unmanned Aerial Vehicles (UAVs, also called drones) have been widely deployed in our living environments for a range of applications such as healthcare, agriculture, and logistics. Despite their unprecedented advantages, the increased number of UAVs and their growing threats demand high-performance management and emergency control strategies. To accurately detect a UAV's working state including hovering and flying, data collection from Radio Frequency (RF) signals is a key step of these strategies and has thus attracted significant research interest. Deep neural networks (DNNs) have been applied for UAV state detection and shown promising potentials. While existing work mostly focuses on improving the DNN structures, we discover that RF signals' pre-processing before sending them to the classification model is as important as improving the DNN structures. Experiments on a dataset show that, after applying proposed pre-processing methods, the 10-time average accuracy is improved from 46.8% to 91.9%, achieving nearly 50% gain comparing with the benchmark work using the same DNN structure. This work also outperforms the state-of-the-art CNN models, confirming the great potentials of data pre-processing for RF-based UAV state detection.


2021 ◽  
Author(s):  
Changhao Ge ◽  
Shubo Yang ◽  
Wenjian Sun ◽  
Yang Luo ◽  
Chunbo Luo

Unmanned Aerial Vehicles (UAVs, also called drones) have been widely deployed in our living environments for a range of applications such as healthcare, agriculture, and logistics. Despite their unprecedented advantages, the increased number of UAVs and their growing threats demand high-performance management and emergency control strategies. To accurately detect a UAV's working state including hovering and flying, data collection from Radio Frequency (RF) signals is a key step of these strategies and has thus attracted significant research interest. Deep neural networks (DNNs) have been applied for UAV state detection and shown promising potentials. While existing work mostly focuses on improving the DNN structures, we discover that RF signals' pre-processing before sending them to the classification model is as important as improving the DNN structures. Experiments on a dataset show that, after applying proposed pre-processing methods, the 10-time average accuracy is improved from 46.8% to 91.9%, achieving nearly 50% gain comparing with the benchmark work using the same DNN structure. This work also outperforms the state-of-the-art CNN models, confirming the great potentials of data pre-processing for RF-based UAV state detection.


2021 ◽  
Vol 7 ◽  
pp. 561-566
Author(s):  
Feng Wen ◽  
Chen Han ◽  
Wenhan Zhao ◽  
Kesong Ji ◽  
Zhoujian Chu

Sign in / Sign up

Export Citation Format

Share Document