Cascaded Convolutional Neural Network with Attention Mechanism for Mobile EEG-based Driver Drowsiness Detection System

Author(s):  
Sirui Ding ◽  
Zhiyong Yuan ◽  
Panfeng An ◽  
Guotong Xue ◽  
Wenxiang Sun ◽  
...  
Author(s):  
Sara Houshmand ◽  
Reza Kazemi ◽  
Hamed Salmanzadeh

A significant number of fatal accidents are caused by drowsy drivers worldwide. Driver drowsiness detection based on electroencephalography (EEG) signals has high accuracy and is known as a reference method for evaluating drowsiness. Among brain waves, EEG alpha spindle activity is a silent feature of decreasing alertness levels. In this paper, based on the detection of EEG alpha spindles, a novel driver drowsiness detection method is presented. The EEG spindles were detected using Continuous Wavelet Transform (CWT) analysis and the Morlet function. To do so, the signal is divided into 30-s epochs, and the observer rating of drowsiness determines the drowsiness level in each epoch. Tests were conducted on 17 healthy males in a driving simulator with a monotonous driving scenario. The Convolutional Neural Network (CNN) is used for classifying EEG signals and automatically learns features of the early drowsy state. The subject-independent classification results for single-channel P4 show 94% accuracy.


2021 ◽  
pp. 1-10
Author(s):  
Chien-Cheng Leea ◽  
Zhongjian Gao ◽  
Xiu-Chi Huanga

This paper proposes a Wi-Fi-based indoor human detection system using a deep convolutional neural network. The system detects different human states in various situations, including different environments and propagation paths. The main improvements proposed by the system is that there is no cameras overhead and no sensors are mounted. This system captures useful amplitude information from the channel state information and converts this information into an image-like two-dimensional matrix. Next, the two-dimensional matrix is used as an input to a deep convolutional neural network (CNN) to distinguish human states. In this work, a deep residual network (ResNet) architecture is used to perform human state classification with hierarchical topological feature extraction. Several combinations of datasets for different environments and propagation paths are used in this study. ResNet’s powerful inference simplifies feature extraction and improves the accuracy of human state classification. The experimental results show that the fine-tuned ResNet-18 model has good performance in indoor human detection, including people not present, people still, and people moving. Compared with traditional machine learning using handcrafted features, this method is simple and effective.


Sign in / Sign up

Export Citation Format

Share Document