Hybrid DC circuit breaker based on oscillation circuit

2020 ◽  
Vol 21 (1) ◽  
pp. 214-223
Author(s):  
Yiqi Liu ◽  
Tian Xia ◽  
Deqing Li
2011 ◽  
Vol 52-54 ◽  
pp. 1009-1014 ◽  
Author(s):  
Tao Jin ◽  
Wei Chen ◽  
Tao Ning

In order to estimate the parameters of capacitance, inductance and resistance in oscillation circuit DC circuit breaker a method of parameter estimation of High-Voltage circuit break based on genetic algorithms is proposed and which can properly assess the performance of DC circuit breaker. In this paper A genetic algorithm is introduced and applied in parameter estimation of High-Voltage circuit breaker and then compare it with the traditional MATLAB curve fitting, the result clearly reveal the advantages of genetic algorithm.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5097
Author(s):  
Sang-Yong Park ◽  
Hyo-Sang Choi

DC systems are modernly starting to come into the spotlight again due to the carbon-neutral policy, the development of semiconductor devices for power, and the increase in digital loads. We need to prepare in advance solutions to problems that may arise from fault currents due to transients for future DC power grid models. In the case of DC, there is no current zero-point because there is no frequency. Therefore, a large switching surge is generated when the circuit breaker cuts off the fault current. The possibility of insulation breakdown is greater than that of AC in severe cases. We consider power semiconductors or superconducting current limiters as an alternative. However, DC breaking cannot be safely achieved by itself. For reliable DC breaking, mechanical circuit breakers must be used with them. Among the mechanical shut-off methods, we adopted the divergence oscillation method. It has the biggest advantage compared to other methods in that it has a simple structure by composing passive elements and can artificially create zero current. In addition, it can be applied to a power semiconductor and a superconducting current limiter to perform a high-reliability cut-off operation. In this paper, we conducted simulation analysis by configuring the DC power grid and DC cut-off system through the PSCAD/EMTDC program. Results confirmed that the application of the LC divergence oscillation circuit can reduce the cut-off time and reduce the power burden of the mechanical DC circuit breaker (MCB).


2012 ◽  
Vol E95.B (6) ◽  
pp. 1990-1996
Author(s):  
Seiya ABE ◽  
Sihun YANG ◽  
Masahito SHOYAMA ◽  
Tamotsu NINOMIYA ◽  
Akira MATSUMOTO ◽  
...  

Author(s):  
Shuo Zhang ◽  
Guibin Zou ◽  
Xiuyan Wei ◽  
Chengquan Zhang

Author(s):  
Lei Qi ◽  
Xilin Chen ◽  
Xinyuan Qu ◽  
Liangtao Zhan ◽  
Xiangyu Zhang ◽  
...  

Designs ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 28
Author(s):  
Hyosung Kim

The medium voltage DC (MVDC) type system can connect multiple terminals to a common MVDC bus, so it is possible to connect several renewable DC power sources to the common MVDC bus, but a DC circuit breaker is needed to isolate short circuit accidents that may occur in the MVDC bus. For this purpose, the concept of a hybrid DC circuit breaker that takes advantage of a low conduction loss contact type switch and an arcless-breaking semiconductor switch has been proposed. During break the hybrid switch, a dedicated current commutation device is required to temporarily bypass the load current flowing through the main switch into a semiconductor switch branch. Existing current commutation methods include a proactive method and a reverse current injection method by a LC (Inductor-capacitor) resonant circuit. This paper proposes a power circuit of a new MVDC hybrid circuit breaker using a low withstanding voltage capacitor branch for commutation and a sequence controller according to it, and verifies its operation through an experiment.


Sign in / Sign up

Export Citation Format

Share Document