A Novel Forced Resonant Mechanical DC Circuit Breaker by Using Auxiliary Oscillation Switch for Zero-crossing

Author(s):  
Lei Qi ◽  
Xilin Chen ◽  
Xinyuan Qu ◽  
Liangtao Zhan ◽  
Xiangyu Zhang ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1349
Author(s):  
Geon Kim ◽  
Jin Sung Lee ◽  
Jin Hyo Park ◽  
Hyun Duck Choi ◽  
Myoung Jin Lee

With the increasing demand for renewable energy power generation systems, high-power DC transmission technology is drawing considerable attention. As a result, stability issues associated with high power DC transmission have been highlighted. One of these problems is the fault current that appears when a fault occurs in the transmission line. If the fault current flows in the transmission line, it has a serious adverse effect on the rectifier stage, inverter stage and transmission line load. This makes the transmission technology less reliable and can lead to secondary problems such as fire. Therefore, fault current must be managed safely. DC circuit breaker technology has been proposed to solve this problem. However, conventional technologies generally do not take into account the effects of fault current on the transmission line, and their efficiency is relatively low. The purpose of this study is to introduce an improved DC circuit breaker that uses a blocking inductor to minimize the effect of fault current on the transmission line. It also uses a ground inductor to efficiently manage the LC resonant current and dissipate residual current. DC circuit breakers minimize adverse effects on external elements and transmission lines because the use of elements placed on each is distinct. All of these processes are precisely verified by conducting simulation under 200 MVA (±100 kV) conditions based on the VSC-based HVDC transmission link. In addition, the mechanism was explained by analyzing the simulation results to increase the reliability of the circuit in this paper.


Author(s):  
S. M. Sanzad Lumen ◽  
Ramani Kannan ◽  
Nor Zaihar Yahaya

Due to the stunning advancement of power electronics, DC power system is getting immense attention in the field of research. Protection and hereafter the protective devices for the DC power system application are two vital areas that need to be explored and developed further. Designing a protective device such as DC circuit breaker possesses a lot of challenges. The main challenge is to interrupt a current which does not have a natural zero crossing like AC current has. In addition, energy is stored in the network inductances during normal operation. Instantaneous current breaking is opposed by this stored energy during circuit breaker tripping, hence, all the DC circuit breaker topologies proposed in literature use snubber network, nonlinear resistor to dissipate this stored energy as heat during the current breaking operation. However, it is possible to store this energy momentarily and reuse it later by developing an improvised topology. In this paper, the prospects of energy recovery and reuse in a DC circuit breaker was studied and a new topology with regenerative current breaking capability had been proposed. This new topology can feed the stored energy of the network back into the same network after breaking the current and thus can improve the overall system efficiency.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 36070-36079 ◽  
Author(s):  
Shangfu Teng ◽  
Zhifeng Zhang ◽  
Liye Xiao

Author(s):  
S. M. Sanzad Lumen ◽  
Ramani Kannan ◽  
Nor Zaihar Yahaya

Direct current (DC) power systems are becoming very popular due to better control ability and equipment reliability thanks to the continuous development of power electronics. A DC circuit breaker (DCCB) used for current interruption in a DC network is a major part of the system. It plays the vital role of isolating networks during fault clearing as well as during normal load switching. Breaking the DC current is a major challenge as it does not have any natural zero crossing points like the AC current has. In addition, energy stored in the network inductances during normal operation opposes the instantaneous current breaking. Hence, all the conventional DC circuit breaker topologies use lossy elements to dissipate this stored energy as heat during the current breaking operation. However, it is possible to store this energy and reuse it later by developing an improvised topology. In this paper, the prospects of energy recovery and reuse in DC circuit breakers have been studied, and a new topology with regenerative current breaking capability has been proposed. This new topology can feed the stored energy of the network back into the same network after breaking the current and thus can improve the overall system efficiency.


2012 ◽  
Vol E95.B (6) ◽  
pp. 1990-1996
Author(s):  
Seiya ABE ◽  
Sihun YANG ◽  
Masahito SHOYAMA ◽  
Tamotsu NINOMIYA ◽  
Akira MATSUMOTO ◽  
...  

Author(s):  
Shuo Zhang ◽  
Guibin Zou ◽  
Xiuyan Wei ◽  
Chengquan Zhang

Designs ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 28
Author(s):  
Hyosung Kim

The medium voltage DC (MVDC) type system can connect multiple terminals to a common MVDC bus, so it is possible to connect several renewable DC power sources to the common MVDC bus, but a DC circuit breaker is needed to isolate short circuit accidents that may occur in the MVDC bus. For this purpose, the concept of a hybrid DC circuit breaker that takes advantage of a low conduction loss contact type switch and an arcless-breaking semiconductor switch has been proposed. During break the hybrid switch, a dedicated current commutation device is required to temporarily bypass the load current flowing through the main switch into a semiconductor switch branch. Existing current commutation methods include a proactive method and a reverse current injection method by a LC (Inductor-capacitor) resonant circuit. This paper proposes a power circuit of a new MVDC hybrid circuit breaker using a low withstanding voltage capacitor branch for commutation and a sequence controller according to it, and verifies its operation through an experiment.


Sign in / Sign up

Export Citation Format

Share Document