A Mid-term Comparison of the Functional Outcomes of Medial Pivot and Rotating Platform Mobile-Bearing Total Knee Arthroplasty in the Indian Population

Author(s):  
Akash Shakya ◽  
Vijay Singh ◽  
Romit A. Agrawal ◽  
Ayush Sharma ◽  
Nilesh Mangale ◽  
...  
The Knee ◽  
2011 ◽  
Vol 18 (6) ◽  
pp. 496-498 ◽  
Author(s):  
Hideo Kobayashi ◽  
Yasushi Akamatsu ◽  
Naoya Taki ◽  
Hirohiko Ota ◽  
Naoto Mitsugi ◽  
...  

2014 ◽  
Vol 23 (6) ◽  
pp. 1669-1675 ◽  
Author(s):  
Michele Ulivi ◽  
Luca Orlandini ◽  
Valentina Meroni ◽  
Olmo Consonni ◽  
Valerio Sansone

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Kyoung-Tak Kang ◽  
Yong-Gon Koh ◽  
Juhyun Son ◽  
Oh-Ryong Kwon ◽  
Jun-Sang Lee ◽  
...  

Reconstructed posterior tibial slope (PTS) plays a significant role in kinematics restoration after total knee arthroplasty (TKA). However, the effect of increased and decreased PTS on prosthetic type and design has not yet been investigated. We used a finite element model, validated using in vitro data, to evaluate the effect of PTS on knee kinematics in cruciate-retaining (CR) and posterior-stabilized (PS) fixed TKA and rotating platform mobile-bearing TKA. Anterior-posterior tibial translation and internal-external tibial rotation were investigated for PTS ranging from -3° to 15°, with increments of 1°, for three different designs of TKA. Tibial posterior translation and external rotation increased as the PTS increased in both CR and PS TKAs. In addition, there was no remarkable difference in external rotation between CR and PS TKAs. However, for the mobile-bearing TKA, PTS had less effect on the kinematics. Based on our computational simulation, PTS is the critical factor that influences kinematics in TKA, especially in the CR TKA. Therefore, the surgeon should be careful in choosing the PTS in CR TKAs.


Sign in / Sign up

Export Citation Format

Share Document