scholarly journals A bound iron porphyrin is redox active in hybrid bacterial reaction centers modified to possess a four-helix bundle domain

Author(s):  
J. P. Allen ◽  
K. D. Chamberlain ◽  
T. L. Olson ◽  
J. C. Williams
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shin Irumagawa ◽  
Kaito Kobayashi ◽  
Yutaka Saito ◽  
Takeshi Miyata ◽  
Mitsuo Umetsu ◽  
...  

AbstractThe stability of proteins is an important factor for industrial and medical applications. Improving protein stability is one of the main subjects in protein engineering. In a previous study, we improved the stability of a four-helix bundle dimeric de novo protein (WA20) by five mutations. The stabilised mutant (H26L/G28S/N34L/V71L/E78L, SUWA) showed an extremely high denaturation midpoint temperature (Tm). Although SUWA is a remarkably hyperstable protein, in protein design and engineering, it is an attractive challenge to rationally explore more stable mutants. In this study, we predicted stabilising mutations of WA20 by in silico saturation mutagenesis and molecular dynamics simulation, and experimentally confirmed three stabilising mutations of WA20 (N22A, N22E, and H86K). The stability of a double mutant (N22A/H86K, rationally optimised WA20, ROWA) was greatly improved compared with WA20 (ΔTm = 10.6 °C). The model structures suggested that N22A enhances the stability of the α-helices and N22E and H86K contribute to salt-bridge formation for protein stabilisation. These mutations were also added to SUWA and improved its Tm. Remarkably, the most stable mutant of SUWA (N22E/H86K, rationally optimised SUWA, ROSA) showed the highest Tm (129.0 °C). These new thermostable mutants will be useful as a component of protein nanobuilding blocks to construct supramolecular protein complexes.


2009 ◽  
Vol 48 (15) ◽  
pp. 2749-2751 ◽  
Author(s):  
Brooke A. Rosenzweig ◽  
Andrew D. Hamilton

2018 ◽  
Vol 115 (12) ◽  
pp. 3042-3047 ◽  
Author(s):  
Maria Luisa Lopez-Redondo ◽  
Nicolas Coudray ◽  
Zhening Zhang ◽  
John Alexopoulos ◽  
David L. Stokes

YiiP is a dimeric antiporter from the cation diffusion facilitator family that uses the proton motive force to transport Zn2+ across bacterial membranes. Previous work defined the atomic structure of an outward-facing conformation, the location of several Zn2+ binding sites, and hydrophobic residues that appear to control access to the transport sites from the cytoplasm. A low-resolution cryo-EM structure revealed changes within the membrane domain that were associated with the alternating access mechanism for transport. In the current work, the resolution of this cryo-EM structure has been extended to 4.1 Å. Comparison with the X-ray structure defines the differences between inward-facing and outward-facing conformations at an atomic level. These differences include rocking and twisting of a four-helix bundle that harbors the Zn2+ transport site and controls its accessibility within each monomer. As previously noted, membrane domains are closely associated in the dimeric structure from cryo-EM but dramatically splayed apart in the X-ray structure. Cysteine crosslinking was used to constrain these membrane domains and to show that this large-scale splaying was not necessary for transport activity. Furthermore, dimer stability was not compromised by mutagenesis of elements in the cytoplasmic domain, suggesting that the extensive interface between membrane domains is a strong determinant of dimerization. As with other secondary transporters, this interface could provide a stable scaffold for movements of the four-helix bundle that confers alternating access of these ions to opposite sides of the membrane.


Sign in / Sign up

Export Citation Format

Share Document