scholarly journals A Manufacturing SCOS Model (MSCOS) Based on the Similarity of Parameter Sequences Between Tasks and Service Composition

Author(s):  
Jie Gao ◽  
Hong Guo ◽  
Xianguo Yan

AbstractService composition and optimal selection (SCOS) is a core issue in cloud manufacturing (CMfg) when integrating distributed manufacturing services for complex manufacturing tasks. Generally, a set of recommended task parameter sequences (Tps) will be given when publishing manufacturing tasks. The similarity between the service composition parameter sequence (SCps) and Tps also reflects the rationality of the service composition. However, various evaluation models based on QoS have been proposed, ignoring the rationality between the Tps and SCps. Considering the similarity of the Tps and SCps in an evaluation model, we propose a manufacturing SCOS framework called MSCOS. The framework includes two parts: an evaluation model and an algorithm for both optimization and selection. In the evaluation model, based on the numerical proximity and geometric similarity between the Tps and SCps, improving the technique for order preference by similarity to an ideal solution (TOPSIS) with the grey correlation degree (GC), we propose the GC&TOPSIS (GTOPSIS). In the optimization and selection algorithm, an improved flower pollination algorithm (IFPA) is proposed to achieve optimization and selection based on polyline characteristics between the fitness values in the population. Experiments show that the MSCOS evaluation effect and optimal selection offer better performance than commonly used algorithms.

2021 ◽  
pp. 1063293X2110323
Author(s):  
Jie Gao ◽  
Xianguo Yan ◽  
Hong Guo

Manufacturing service composition and optimal selection (SCOS) is a key technology that improves resource utilization and reduces the cost in discrete manufacturing. However, the lack of evaluation of the service composition function and the unconformity of the actual composition vague characteristics, resulting in the incomplete evaluation of the service composition. Additionally, various optimization and selection algorithms have defects of premature convergence and low efficiency. At the same time, the fitness value distribution of the service composition has a non-linear characteristic. In this article, a framework called discrete manufacturing SCOS (DMSCOS) is proposed to overcome these issues. DMSCOS uses the functional interval parameter and fuzzy QoS attribute aware evaluation model (FIPFQA) to achieve composition evaluation and introduces a moving window flower pollination algorithm (MWFPA) to achieve optimization and selection for the non-linear characteristic population. Experiments show that DMSCOS has good performance for optimization and selection. The FIPFQA has a good effect on service composition evaluation. Furthermore, compared with two other extended algorithms, the proposed MWFPA performs better when addressing the optimal and selection problem.


Sign in / Sign up

Export Citation Format

Share Document