Duplex grain boundary precipitation in austenitic stainless steels containing aluminium and titanium

1984 ◽  
Vol 32 (7) ◽  
pp. 1105-1115 ◽  
Author(s):  
R.A. Ricks
Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D. Matlock

Thermomechanically induced strain is a key variable producing accelerated carbide precipitation, sensitization and stress corrosion cracking in austenitic stainless steels (SS). Recent work has indicated that higher levels of strain (above 20%) also produce transgranular (TG) carbide precipitation and corrosion simultaneous with the grain boundary phenomenon in 316 SS. Transgranular precipitates were noted to form primarily on deformation twin-fault planes and their intersections in 316 SS.Briant has indicated that TG precipitation in 316 SS is significantly different from 304 SS due to the formation of strain-induced martensite on 304 SS, though an understanding of the role of martensite on the process has not been developed. This study is concerned with evaluating the effects of strain and strain-induced martensite on TG carbide precipitation in 304 SS. The study was performed on samples of a 0.051%C-304 SS deformed to 33% followed by heat treatment at 670°C for 1 h.


1995 ◽  
Vol 192-193 ◽  
pp. 945-949 ◽  
Author(s):  
Maria-Lynn Turi ◽  
George Weatherly ◽  
Gary Purdy

2007 ◽  
Vol 567-568 ◽  
pp. 33-38
Author(s):  
Jozef Janovec ◽  
Jaroslav Pokluda ◽  
Pavel Lejček

Chemical and structural changes at the grain boundaries were investigated to quantify their influence on fracture behaviour of austenitic stainless steels and model ferritic Fe-Si-P alloys. The balance between the size and the area density of intergranular particles was found to be one of the most decisive factors influencing sensitivity of the steels to intergranular fracture. The precise dependence of the energy of intergranular fracture on the phosphorus grain boundary concentration was also determined.


Sign in / Sign up

Export Citation Format

Share Document