Electrokinetic properties, colloidal stability and aggregation kinetics of polymer colloids

1996 ◽  
Vol 67 ◽  
pp. 1-118 ◽  
Author(s):  
R. Hidalgo-Álvarez ◽  
A. Martín ◽  
A. Fernández ◽  
D. Bastos ◽  
F. Martínez ◽  
...  
2003 ◽  
Vol 103 (1) ◽  
pp. 33-56 ◽  
Author(s):  
Marco Lattuada ◽  
Peter Sandkühler ◽  
Hua Wu ◽  
Jan Sefcik ◽  
Massimo Morbidelli

Langmuir ◽  
2009 ◽  
Vol 25 (17) ◽  
pp. 9703-9713 ◽  
Author(s):  
Cornelius Gauer ◽  
Zichen Jia ◽  
Hua Wu ◽  
Massimo Morbidelli

2013 ◽  
Vol 448-453 ◽  
pp. 48-51
Author(s):  
Hua Fang ◽  
Bing Bing Shen ◽  
Yu Xin Sun ◽  
Yuan Wang ◽  
Ji Lai Lu

The aggregation kinetics of C60 nanoparticles have been investigated over a wide range of monovalent and divalent electrolyte concentrations by employing time-resolved dynamic light scattering (DLS). The results showed that the presence of electrolyte made a dramatic decrease in the surface zeta potential and increase in the particle size. The aggregation kinetics of C60 nanoparticles exhibited reaction-limited and diffusion-limited regimes, which was found to be consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability. The critical coagulation concentration (CCC) values of C60 nanoparticles were estimated as 321mM Na+, 295mM K+, 9.6mM Ca2+and 6.7mM Mg2+, which were far higher than the electrolyte concentrations in natural water. The enhanced C60 stability in the presence of humic acid was attributable to steric repulsion. Therefore C60 nanoparticles can be relatively stable in typical aquatic environments.


1982 ◽  
Vol 48 (02) ◽  
pp. 211-216 ◽  
Author(s):  
V M Haver ◽  
A R L Gear

SummaryPlatelet heterogeneity has been studied with a technique called functional fractionation which employs gentle centrifugation to yield subpopulations (“reactive” and “less-reactive” platelets) after exposure to small doses of aggregating agent. Aggregation kinetics of the different platelet populations were investigated by quenched-flow aggregometry. The large, “reactive” platelets were more sensitive to ADP (Ka = 1.74 μM) than the smaller “less-reactive” platelets (Ka = 4.08 μM). However, their maximal rate of aggregation (Vmax, % of platelets aggregating per sec) of 23.3 was significantly lower than the “less-reactive” platelets (Vmax = 34.7). The “reactive” platelets had a 2.2 fold higher level of cyclic AMP.Platelet glycoproteins were labeled using the neuraminidase-galactose oxidase – [H3]-NaBH4 technique. When platelets were labeled after reversible aggregation, the “reactive” platelets showed a two-fold decrease in labeling efficiency (versus control platelets). However, examination of whole cells or membrane preparations from reversibly aggregated platelets revealed no significant difference in Coomassie or PAS (Schiff) staining.These results suggest that the large, “reactive” platelets are more sensitive to ADP but are not hyperaggregable in a kinetic sense. Reversible aggregation may cause a re-orientation of membrane glycoproteins that is apparently not characterized by a major loss of glycoprotein material.


2010 ◽  
Vol 132 (13) ◽  
pp. 134903 ◽  
Author(s):  
Alessio Zaccone ◽  
Daniele Gentili ◽  
Massimo Morbidelli

2019 ◽  
Vol 158 ◽  
pp. 4846-4851
Author(s):  
Yaoting Huang ◽  
Chunping Xie ◽  
Chuan Li ◽  
Yongliang Li ◽  
Yulong Ding

2012 ◽  
Vol 429 ◽  
pp. 325-331 ◽  
Author(s):  
Amro M. El Badawy ◽  
Kirk G. Scheckel ◽  
Makram Suidan ◽  
Thabet Tolaymat

Biochemistry ◽  
2010 ◽  
Vol 49 (43) ◽  
pp. 9345-9352 ◽  
Author(s):  
Jessika Meuvis ◽  
Melanie Gerard ◽  
Linda Desender ◽  
Veerle Baekelandt ◽  
Yves Engelborghs

Sign in / Sign up

Export Citation Format

Share Document