scholarly journals Identification of P-450ALC in microsomes from alcohol dehydrogenase-deficient deermice: Contribution to ethanol elimination in vivo

1988 ◽  
Vol 264 (1) ◽  
pp. 114-124 ◽  
Author(s):  
Jeffrey A. Handler ◽  
Dennis R. Koop ◽  
Minor J. Coon ◽  
Yoshiyuki Takei ◽  
Ronald G. Thurman
Genetics ◽  
1987 ◽  
Vol 117 (1) ◽  
pp. 75-84
Author(s):  
Pieter W H Heinstra ◽  
Willem Scharloo ◽  
George E W Thörig

ABSTRACT This study deals with biochemical and metabolic-physiological aspects of the relationship between variation in in vivo alcohol dehydrogenase activity and fitness in larvae homozygous for the alleles Adh71k, AdhF, AdhS, of Drosophila melanogaster, and for the common Adh allele of Drosophila simulans. The Adh genotypes differ in the maximum oxidation rates of propan-2-ol into acetone in vivo. There are smaller differences between the Adh genotypes in rates of ethanol elimination. Rates of accumulation of ethanol in vivo are negatively associated with larval-to-adult survival of the Adh genotypes. The rank order of the maximum rates of the ADHs in elimination of propan-2-ol, as well as ethanol, is ADH-71k > ADH-F > ADH-S- > simulans-ADH. The ratio of this maximum rate to ADH quantity reveals the rank order of ADH-S > ADH-F > ADH-71k > simulans-ADH, suggesting a compensation for allozymic efficiency by the ADH quantity in D. melanogaster.—Our findings show that natural selection may act on the Adh polymorphism in larvae via differences in rates of alcohol metabolism.


Sign in / Sign up

Export Citation Format

Share Document