Kinetics of ubiquinol-1-cytochrome c reductase in bovine heart mitochondria and submitochondrial particles

1982 ◽  
Vol 682 (2) ◽  
pp. 189-200 ◽  
Author(s):  
Mauro Degli Esposti ◽  
Giorgio Lenaz
1988 ◽  
Vol 155 (3) ◽  
pp. 1145-1153 ◽  
Author(s):  
Romana Fato ◽  
Cinzia Castelluccio ◽  
Stefania Armaroli ◽  
Alberto Contarini ◽  
Giovanna Parenti Castelli ◽  
...  

1990 ◽  
Vol 265 (3) ◽  
pp. 865-870 ◽  
Author(s):  
B B Hasinoff

The NADH-cytochrome c reductase activity of bovine heart submitochondrial particles was found to be slowly (half-time of 16 min) and progressively lost upon incubation with the Fe2(+)-adriamycin complex. In addition to this slow progressive inactivation seen on incubation, a reversible fast phase of inhibition was also seen. However, if EDTA was added to the incubation mixture within 15 s, the slow progressive loss in activity was largely preventable. Separate experiments indicated that EDTA removed about one-half of the iron from the Fe2(+)-adriamycin complex in about 40 s. These results indicated the requirement for iron for the inactivation process. Since the Vmax. for the fast phase of inhibition was decreased by the inhibitor, the inhibition pattern was similar to that seen for uncompetitive or mixed-type inhibition. The direct binding of both Fe3(+)-adriamycin and adriamycin to submitochondrial particles was also demonstrated, with the Fe3(+)-adriamycin complex binding 8 times more strongly than adriamycin. Thus binding of Fe3(+)-adriamycin to the enzyme or to the inner mitochondrial membrane with subsequent generation of oxy radicals in situ is a possible mechanism for the Fe3(+)-adriamycin-induced inactivation of respiratory enzyme activity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Markus L. Björck ◽  
Jóhanna Vilhjálmsdóttir ◽  
Andrew M. Hartley ◽  
Brigitte Meunier ◽  
Linda Näsvik Öjemyr ◽  
...  

AbstractIn cytochrome c oxidase (CytcO) reduction of O2 to water is linked to uptake of eight protons from the negative side of the membrane: four are substrate protons used to form water and four are pumped across the membrane. In bacterial oxidases, the substrate protons are taken up through the K and the D proton pathways, while the pumped protons are transferred through the D pathway. On the basis of studies with CytcO isolated from bovine heart mitochondria, it was suggested that in mitochondrial CytcOs the pumped protons are transferred though a third proton pathway, the H pathway, rather than through the D pathway. Here, we studied these reactions in S. cerevisiae CytcO, which serves as a model of the mammalian counterpart. We analyzed the effect of mutations in the D (Asn99Asp and Ile67Asn) and H pathways (Ser382Ala and Ser458Ala) and investigated the kinetics of electron and proton transfer during the reaction of the reduced CytcO with O2. No effects were observed with the H pathway variants while in the D pathway variants the functional effects were similar to those observed with the R. sphaeroides CytcO. The data indicate that the S. cerevisiae CytcO uses the D pathway for proton uptake and presumably also for proton pumping.


1993 ◽  
Vol 290 (1) ◽  
pp. 225-236 ◽  
Author(s):  
R Fato ◽  
M Cavazzoni ◽  
C Castelluccio ◽  
G Parenti Castelli ◽  
G Palmer ◽  
...  

In an attempt to establish the relative importance of diffusional and chemical control in the reactivity of the two of the two substrates, ubiquinol and cytochrome c, we have undertaken as extensive characterization of the steady-state kinetics of ubiquinol-cytochrome c reductase (EC 1.10.2.2) when present in open submitochondrial particles from bovine heart. The kinetic pattern follows a Ping Pong mechanism; contrary to the situation found with the isolated enzyme [Speck and Margoliash (1984) J. Biol. Chem. 259, 1064-1072, and confirmed in our laboratory], no substrate inhibition by oxidized cytochrome c was observed with the membrane-bound enzyme. Endogenous oxidized ubiquinone-10 is unable to exert product inhibition under the conditions employed. In the Ping Pong mechanism for this enzyme, the reaction scheme can be clearly divided into two parts, and the Kmin. (kcat./km) value for one substrate is independent of the rate constant for the second substrate. Both ubiquinol-1 and ubiquinol-2 can be used as electron donors reacting with the enzyme from within the lipid bilayer [Fato, Castelluccio, Palmer and Lenaz (1988) Biochim. Biophys. Acta 932, 216-222]; the kmin. values for ubiquinols, when calculated on the basis of their membranous concentrations, are significantly lower than the kmin. for cytochrome c. The temperature-dependence of the kinetic parameters was investigated by titrating each of the substrates under quasi-saturating concentrations of the second substrate. Arrhenius plots of Vmax. extrapolated from both cytochrome c and ubiquinol titrations were linear, when care was taken to verify the quasi-saturating concentrations of the fixed co-substrate. The Arrhenius plots for the kmin. values for both ubiquinol and cytochrome c were linear, but the activation energy was much higher for the former, particularly when calculated for ubiquinol dissolved in the lipid phase; the very low value of activation energy of the kmin. for cytochrome c is strong support for diffusion control being present in the reaction of cytochrome c with the membranous enzyme. In contrast to the soluble enzyme, ubiquinone titrations of submitochondrial particles at low cytochrome c concentrations deviated from hyperbolic behaviour. Changing the medium viscosity with either poly(ethylene glycol) or sucrose had a strong effect on the cytochrome c kmin., whereas the change in the ubiquinol kmin. was much smaller. From the viscosity studies the extent of diffusional control could be calculated, revealing that the reaction with cytochrome c was mostly diffusion-limited. The viscosity of the membrane was changed by incorporating cholesterol; no significant effect on the ubiquinol kmin. ascribable to diffusion control could be recognized.(ABSTRACT TRUNCATED AT 400 WORDS)


1982 ◽  
Vol 202 (1) ◽  
pp. 97-105 ◽  
Author(s):  
H Narabayashi ◽  
K Takeshige ◽  
S Minakami

We investigated the changes of the inner-membrane components and the electron-transfer activities of bovine heart submitochondrial particles induced by the lipid peroxidation supported by NADPH in the presence of ADP-Fe3+. Most of the polyunsaturated fatty acids were lost as a result of the peroxidation, and phospholipids were changed to polar species. Ubiquinone was also modified to polar substances as the peroxidation proceeded. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis showed the disappearance of 27000-Mr and 30000-Mr proteins and the appearance of highly polymerized substances. Flavins and cytochromes were not diminished, but the respiratory activity was lost. The reactions of NADH oxidase and NADH-cytochrome c reductase were most sensitive to the peroxidation, followed by those of succinate oxidase and succinate-cytochrome c reductase. Succinate dehydrogenase and duroquinol-cytochrome c reductase were inactivated by more extensive peroxidation, but cytochrome c oxidase was only partially inactivated. NADH-ferricyanide reductase was not inactivated. The pattern of the inactivation indicated that the lipid peroxidation affected the electron transport intensively between NADH dehydrogenase and ubiquinone, and moderately at the succinate dehydrogenase step and between ubiquinone and cytochrome c.


Biochemistry ◽  
1996 ◽  
Vol 35 (8) ◽  
pp. 2705-2716 ◽  
Author(s):  
Romana Fato ◽  
Ernesto Estornell ◽  
Salvatore Di Bernardo ◽  
Francesco Pallotti ◽  
Giovanna Parenti Castelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document