Linear-dichroic triplet-minus-singlet absorbance difference spectra of reaction centers of the photosynthetic bacteria Chromatium vinosum, Rhodopseudomonas sphaeroides R-26 and Rhodospirillum rubrum S1

1985 ◽  
Vol 806 (3) ◽  
pp. 389-397 ◽  
Author(s):  
A.J. Hoff ◽  
H.J. den Blanken ◽  
H. Vasmel ◽  
R.F. Meiburg
1979 ◽  
Vol 181 (2) ◽  
pp. 339-345 ◽  
Author(s):  
Nicholas J. Russell ◽  
John L. Harwood

The acyl lipids and their constituent fatty acids were studied in the photosynthetic bacteria Rhodospirillum rubrum, Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides, which were grown under photosynthetic and non-photosynthetic conditions. The major lipids were found to be phosphatidylethanolamine, phosphatidylglycerol and cardiolipin in each bacterium. The two Rhodopseudomonas species also contained significant quantities of phosphatidylcholine. Other acyl lipids accounted for less than 10% of the total. On changing growth conditions from non-photosynthetic to photosynthetic a large increase in the relative proportion of phosphatidylglycerol was seen at the expense of phosphatidyl-ethanolamine. In Rhodospirillum rubrum the fatty acids of the major phospholipids showed an increase in the proportion of palmitate and stearate and a decrease in palmitoleate and vaccenate on changing growth conditions to photosynthetic. In contrast, the exceptionally high levels (>80%) of vaccenate in individual phospholipids of Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides were unaffected by changing growth conditions to photosynthetic. Analysis of the lipids of chromatophores, isolated from the three bacteria, showed that these preparations were enriched in phosphatidylglycerol. The large increase in this phospholipid, seen during growth under photosynthetic conditions, appeared, therefore, to be due to a proliferation of chromatophore membranes. Possible roles for acyl lipids in the formation and function of the photosynthetic apparatus of bacteria are discussed.


Sign in / Sign up

Export Citation Format

Share Document