Effects of different bile salts upon the composition and morphology of a liver plasma membrane preparation. Deoxycholate is more membrane damaging than cholate and its conjugates

1977 ◽  
Vol 465 (1) ◽  
pp. 68-76 ◽  
Author(s):  
O.S. Vyvoda ◽  
R. Coleman ◽  
G. Holdsworth
1983 ◽  
Vol 96 (1) ◽  
pp. 217-229 ◽  
Author(s):  
A L Hubbard ◽  
D A Wall ◽  
A Ma

A rat liver plasma membrane preparation was isolated and characterized both biochemically and morphologically. The isolation procedure was rapid, simple and effective in producing a membrane fraction with the following biochemical characteristics: approximately 40-fold enrichment in three plasma membrane markers, 5'-nucleotidase, alkaline phosphodiesterase I (both putative bile canalicular membrane enzymes), and the asialo-glycoprotein (ASGP) receptor (a membrane glycoprotein present along the sinusoidal front of hepatocytes); a yield of each of these plasma membrane markers that averaged approximately 16%; and minimal contamination by lysosomes, nuclei, and mitochondria, but persistent contamination by elements of the endoplasmic reticulum. Morphological analysis of the preparation revealed that all three major domains of the hepatocyte plasma membrane (sinusoidal, lateral, and bile canalicular) were present in substantial amounts. The identification of sinusoidal membrane was further confirmed when ASGP binding sites were localized predominantly to this membrane in the isolated PM using electron microscope autoradiography. By morphometry, the sinusoidal front membrane accounted for 47% of the total membrane in the preparation, whereas the lateral surface and bile canalicular membrane accounted for 6.8% and 23% respectively. This is the first report of such a large fraction of sinusoidal membrane in a liver plasma membrane preparation.


1976 ◽  
Vol 154 (1) ◽  
pp. 11-21 ◽  
Author(s):  
J P Luzio ◽  
A C Newby ◽  
C N Hales

1. A rapid method for the isolation of hormonally sensitive rat fat-cell plasma membranes was developed by using immunological techniques. 2. Rabbit anti-(rat erythrocyte) sera were raised and shown to cross-react with isolated rat fat-cells. 3. Isolated rat fat-cells were coated with rabbit anti-(rat erythrocyte) antibodies, homogenized and the homogenate made to react with an immunoadsorbent prepared by covalently coupling donkey anti-(rabbit globulin) antibodies to aminocellulose. Uptake of plasma membrane on to the immunoadsorbent was monitored by assaying the enzymes adenylate cyclase and 5′-nucleotidase and an immunological marker consisting of a 125I-labelled anti-(immunoglobulin G)-anti-cell antibody complex bound to the cells before fractionation. Contamination of the plasma-membrane preparation by other subcellular fractions was also investigated. 4. By using this technique, a method was developed allowing 25-40% recovery of plasma membrane from fat-cell homogenates within 30 min of homogenization. 5. Adenylate cyclase in the isolated plasma-membrane preparation was stimulated by 5 μm-adrenaline.


1988 ◽  
Vol 117 (2) ◽  
pp. 191-NP ◽  
Author(s):  
S. M. Laird ◽  
G. P. Vinson ◽  
B. J. Whitehouse

ABSTRACT Accumulated data from in-vitro experiments have suggested that 18-hydroxysteroids may be stored within the intact rat adrenal zona glomerulosa. The phenomenon was further investigated by comparing the amount of steroid remaining in the zona glomerulosa tissue with that secreted into the media during incubation in vitro. The results showed that 18-hydroxydeoxycorticosterone (18-OH-DOC) and 18-hydroxycorticosterone (18-OH-B) were retained within the tissue against a considerable concentration gradient, with smaller amounts of aldosterone and corticosterone. Lysis of the intact zona glomerulosa, by preincubation in distilled water, yielded an enriched plasma membrane preparation. After subsequent incubation in Krebs–Ringer bicarbonate this preparation contained significantly more 18-OH-DOC than did the intact tissue, suggesting that tissuesequestered 18-OH-DOC is normally metabolized to other products. These may include 18-OH-B and aldosterone. Fractionation of homogenized intact zona glomerulosa and the enriched plasma membrane preparation by density gradient centrifugation showed that tissue 18-OH-DOC banded in fractions of density 1·063– 1·21 g/ml and that its distribution was highly correlated with protein. Corticosterone, 18-OH-B and aldosterone banded like added free [3H]18-OH-DOC in fractions of density < 1·006 g/ml. The results suggest that 18-OH-DOC is the major sequestered steroid within the rat adrenal zona glomerulosa and that this sequestration is attributable to the association of 18-OH-DOC with a high-density component of the plasma membrane. J. Endocr. (1988) 117, 191–196


Biochemistry ◽  
1989 ◽  
Vol 28 (20) ◽  
pp. 8083-8087 ◽  
Author(s):  
Robert J. Roon ◽  
Sharon A. Shofner ◽  
James F. Koerner

1988 ◽  
Vol 254 (5) ◽  
pp. G761-G767
Author(s):  
F. R. Simon ◽  
E. Sutherland ◽  
J. Sutherland

Sodium-potassium adenosinetriphosphatase (Na+-K+-ATPase) is modulated by functional demands. We determine whether Na+-K+-ATPase specific activity was changed by oral administration of different bile salts and whether upregulation in the liver is due to increased numbers of catalytic units. In rats after bile duct drainage for 18 h, Na+-K+-ATPase activity was reduced to 50% of control in liver and ileum but unchanged in jejunum and kidney. Increased Na+-K+-ATPase activity after short-term feeding of bile salts was noted only following trihydroxy bile salts, i.e., taurocholate (100 mg/100 g body wt) increased hepatic Na+-K+-ATPase 143% and ileum 138% above control, whereas jejunum and kidney were unchanged. Chronic feeding of trihydroxy bile salts for 4 days increased hepatic Na+-K+-ATPase (214-260%) and alkaline phosphatase (189-274%), whereas 5'-nucleotidase and Mg2+-ATPase activities were unchanged from control. Plasma membrane Na+-K+-ATPase activity significantly increased as early as 4 h after taurocholate administration, whereas homogenate activity did not rise until 16 h; both reached a new steady state between 24 and 48 h. Sixteen hours after bile salt feeding, increased Na+-K+-ATPase activity was blocked by cycloheximide, and in the liver increased enzyme activity (179%) was associated with a comparable change in sodium-dependent [gamma-32P]ATP binding (162%) to liver plasma membrane fractions. These studies show Na+-K+-ATPase activity adapts selectively in liver and ileum following administration of trihydroxy bile salts, and the process involves increased density of Na+-K+ pump sites on the liver plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document