Cell wall polysaccharide synthesis invitro catalyzed by an enzyme from slime mold myxamoebae lacking a cell wall

1966 ◽  
Vol 22 (3) ◽  
pp. 352-356 ◽  
Author(s):  
Barbara Wright ◽  
Carole Ward ◽  
Donna Dahlberg
2005 ◽  
Vol 391 (2) ◽  
pp. 409-415 ◽  
Author(s):  
Anna Kärkönen ◽  
Alain Murigneux ◽  
Jean-Pierre Martinant ◽  
Elodie Pepey ◽  
Christophe Tatout ◽  
...  

UDPGDH (UDP-D-glucose dehydrogenase) oxidizes UDP-Glc (UDP-D-glucose) to UDP-GlcA (UDP-D-glucuronate), the precursor of UDP-D-xylose and UDP-L-arabinose, major cell wall polysaccharide precursors. Maize (Zea mays L.) has at least two putative UDPGDH genes (A and B), according to sequence similarity to a soya bean UDPGDH gene. The predicted maize amino acid sequences have 95% similarity to that of soya bean. Maize mutants with a Mu-element insertion in UDPGDH-A or UDPGDH-B were isolated (udpgdh-A1 and udpgdh-B1 respectively) and studied for changes in wall polysaccharide biosynthesis. The udpgdh-A1 and udpgdh-B1 homozygotes showed no visible phenotype but exhibited 90 and 60–70% less UDPGDH activity respectively than wild-types in a radiochemical assay with 30 μM UDP-glucose. Ethanol dehydrogenase (ADH) activity varied independently of UDPGDH activity, supporting the hypothesis that ADH and UDPGDH activities are due to different enzymes in maize. When extracts from wild-types and udpgdh-A1 homozygotes were assayed with increasing concentrations of UDP-Glc, at least two isoforms of UDPGDH were detected, having Km values of approx. 380 and 950 μM for UDP-Glc. Leaf and stem non-cellulosic polysaccharides had lower Ara/Gal and Xyl/Gal ratios in udpgdh-A1 homozygotes than in wild-types, whereas udpgdh-B1 homozygotes exhibited more variability among individual plants, suggesting that UDPGDH-A activity has a more important role than UDPGDH-B in UDP-GlcA synthesis. The fact that mutation of a UDPGDH gene interferes with polysaccharide synthesis suggests a greater importance for the sugar nucleotide oxidation pathway than for the myo-inositol pathway in UDP-GlcA biosynthesis during post-germinative growth of maize.


1968 ◽  
Vol 3 (1) ◽  
pp. 71-80
Author(s):  
F. B. P. WOODING

Chemical and radioautographic studies on sycamore seedling stems have shown an involvement of the Golgi body in cell-wall polysaccharide synthesis from tritiated glucose. Tritiated phenylalanine is shown to be incorporated only into lignin after short incubation times. The patterns of labelling are compared and discussed for the two precursors.


2000 ◽  
Vol 33 (15) ◽  
pp. 5680-5685 ◽  
Author(s):  
A. Patrick Gunning ◽  
Alan R. Mackie ◽  
Andrew R. Kirby ◽  
Paul Kroon ◽  
Gary Williamson ◽  
...  

2009 ◽  
pp. 94-187 ◽  
Author(s):  
Debra Mohnen ◽  
Maor Bar-Peled ◽  
Chris Somerville

1999 ◽  
Vol 77 (7) ◽  
pp. 961-968 ◽  
Author(s):  
Oussama Ahrazem ◽  
Begoña Gómez-Miranda ◽  
Alicia Prieto ◽  
Isabel Barasoaín ◽  
Manuel Bernabé ◽  
...  

1995 ◽  
Vol 267 (2) ◽  
pp. 313-321 ◽  
Author(s):  
Burkhard Becker ◽  
Jos P.M. Lommerse ◽  
Michael Melkonian ◽  
Johannis P. Kamerling ◽  
Johannes F.G. Vliegenthart

ChemInform ◽  
2010 ◽  
Vol 26 (29) ◽  
pp. no-no
Author(s):  
B. BECKER ◽  
J. P. M. LOMMERSE ◽  
M. MELKONIAN ◽  
J. P. KAMERLING ◽  
J. F. G. VLIEGENTHART

Sign in / Sign up

Export Citation Format

Share Document