scholarly journals Demonstration of Streptococcus mutans with a Cell Wall Polysaccharide Specific to a New Serotype, k, in the Human Oral Cavity

2004 ◽  
Vol 42 (1) ◽  
pp. 198-202 ◽  
Author(s):  
K. Nakano ◽  
R. Nomura ◽  
I. Nakagawa ◽  
S. Hamada ◽  
T. Ooshima
2019 ◽  
Vol 202 (6) ◽  
Author(s):  
Andrew P. Bischer ◽  
Christopher J. Kovacs ◽  
Roberta C. Faustoferri ◽  
Robert G. Quivey

ABSTRACT The rhamnose-glucose cell wall polysaccharide (RGP) of Streptococcus mutans plays a significant role in cell division, virulence, and stress protection. Prior studies examined function of the RGP using strains carrying deletions in the machinery involved in RGP assembly. In this study, we explored loss of the substrate for RGP, l-rhamnose, via deletion of rmlD (encoding the protein responsible for the terminal step in l-rhamnose biosynthesis). We demonstrate that loss of rhamnose biosynthesis causes a phenotype similar to strains with disrupted RGP assembly (ΔrgpG and ΔrgpF strains). Deletion of rmlD not only caused a severe growth defect under nonstress growth conditions but also elevated susceptibility of the strain to acid and oxidative stress, common conditions found in the oral cavity. A genetic complement of the ΔrmlD strain completely restored wild-type levels of growth, whereas addition of exogenous rhamnose did not. The loss of rhamnose production also significantly disrupted biofilm formation, an important aspect of S. mutans growth in the oral cavity. Further, we demonstrate that loss of either rmlD or rgpG results in ablation of rhamnose content in the S. mutans cell wall. Taken together, these results highlight the importance of rhamnose production in both the fitness and the ability of S. mutans to overcome environmental stresses. IMPORTANCE Streptococcus mutans is a pathogenic bacterium that is the primary etiologic agent of dental caries, a disease that affects billions yearly. Rhamnose biosynthesis is conserved not only in streptococcal species but in other Gram-positive, as well as Gram-negative, organisms. This study highlights the importance of rhamnose biosynthesis in RGP production for protection of the organism against acid and oxidative stresses, the two major stressors that the organism encounters in the oral cavity. Loss of RGP also severely impacts biofilm formation, the first step in the onset of dental caries. The high conservation of the rhamnose synthesis enzymes, as well as their importance in S. mutans and other organisms, makes them favorable antibiotic targets for the treatment of disease.


1991 ◽  
Vol 4 (2) ◽  
pp. 184-190 ◽  
Author(s):  
K L Ruoff

Streptococci requiring either pyridoxal or L-cysteine for growth were first observed 30 years ago as organisms forming satellite colonies adjacent to colonies of "helper" bacteria. Although they were previously considered nutritional mutants of viridans streptococcal species, the nutritionally variant streptococci (NVS) are currently thought to belong to distinct species of the genus Streptococcus. NVS strains may display pleomorphic cellular morphologies, depending on their growth conditions, and are distinguished from most other streptococci by enzymatic and serological characteristics and the presence of a cell wall chromophore. NVS are found as normal inhabitants of the oral cavity, and in addition to their participation in endocarditis, they have been isolated from a wide range of clinical specimens. Endocarditis caused by NVS is often difficult to eradicate; combinations of penicillin and an aminoglycoside are recommended for treatment. The unique physiological features of the NVS contribute to the difficulties encountered in their recovery from clinical specimens and may play a role in the problems associated with successful treatment of NVS endocarditis.


2000 ◽  
Vol 33 (15) ◽  
pp. 5680-5685 ◽  
Author(s):  
A. Patrick Gunning ◽  
Alan R. Mackie ◽  
Andrew R. Kirby ◽  
Paul Kroon ◽  
Gary Williamson ◽  
...  

2020 ◽  
Author(s):  
Svetlana Zamakhaeva ◽  
Catherine T. Chaton ◽  
Jeffrey S. Rush ◽  
Sowmya Ajay Castro ◽  
Alexander E. Yarawsky ◽  
...  

AbstractBacterial cell division is driven by a tubulin homolog FtsZ, which assembles into the Z-ring structure leading to the recruitment of the cell division machinery. In ovoid-shaped Gram-positive bacteria, such as streptococci, MapZ guides Z-ring positioning at cell equators through an, as yet, unknown mechanism. The cell wall of the important dental pathogen Streptococcus mutans is composed of peptidoglycan decorated with Serotype c Carbohydrates (SCCs). Here, we show that an immature form of SCC, lacking the recently identified glycerol phosphate (GroP) modification, coordinates Z-ring positioning. Pulldown assays using S. mutans cell wall combined with binding affinity analysis identified the major cell separation autolysin, AtlA, as an SCC binding protein. Importantly, AtlA binding to mature SCC is attenuated due to GroP modification. Using fluorescently-labeled AtlA, we mapped SCC distribution on the streptococcal surface to reveal that GroP-deficient immature SCCs are exclusively present at the cell poles and equators. Moreover, the equatorial GroP-deficient SCCs co-localize with MapZ throughout the S. mutans cell cycle. Consequently, in GroP-deficient mutant bacteria, proper AtlA localization is abrogated resulting in dysregulated cellular autolysis. In addition, these mutants display morphological abnormalities associated with MapZ mislocalization leading to Z-ring misplacement. Altogether, our data support a model in which GroP-deficient immature SCCs spatially coordinate the localization of AtlA and MapZ. This mechanism ensures cell separation by AtlA at poles and Z-ring alignment with the cell equator.Graphical abstract


1999 ◽  
Vol 77 (7) ◽  
pp. 961-968 ◽  
Author(s):  
Oussama Ahrazem ◽  
Begoña Gómez-Miranda ◽  
Alicia Prieto ◽  
Isabel Barasoaín ◽  
Manuel Bernabé ◽  
...  

2001 ◽  
Vol 8 (6) ◽  
pp. 1136-1139 ◽  
Author(s):  
Yoshihiro Shimazaki ◽  
Morihide Mitoma ◽  
Takahiko Oho ◽  
Yoshio Nakano ◽  
Yoshihisa Yamashita ◽  
...  

ABSTRACT Cell surface protein antigen (PAc) and water-insoluble glucan-synthesizing enzyme (GTF-I) produced by cariogenicStreptococcus mutans are two major factors implicated in the colonization of the human oral cavity by this bacterium. We examined the effect of bovine milk, produced after immunization with a fusion protein of functional domains of these proteins, on the recolonization of S. mutans. To prepare immune milk, a pregnant Holstein cow was immunized with the fusion protein PAcA-GB, a fusion of the saliva-binding alanine-rich region (PAcA) of PAc and the glucan-binding (GB) domain of GTF-I. After eight adult subjects received cetylpyridinium chloride (CPC) treatment, one subgroup (n = 4) rinsed their mouths with immune milk and a control group (n = 4) rinsed with nonimmune milk. S. mutans levels in saliva and dental plaque decreased after CPC treatment in both groups. Mouth rinsing with immune milk significantly inhibited recolonization of S. mutans in saliva and plaque. On the other hand, the numbers of S. mutans cells in saliva and plaque in the control group increased immediately after the CPC treatment and surpassed the baseline level 42 and 28 days, respectively, after the CPC treatment. The ratios ofS. mutans to total streptococci in saliva and plaque in the group that received immune milk were lower than those in the control group. These results suggest that milk produced from immunized cow may be useful for controlling S. mutans in the human oral cavity.


Sign in / Sign up

Export Citation Format

Share Document