Spin-trapping of sulfite radical anion, SO3•, by a water-soluble, nitroso-aromatic spin-trap

1987 ◽  
Vol 142 (2) ◽  
pp. 410-416 ◽  
Author(s):  
Toshihiko Ozawa ◽  
Akira Hanaki
The Analyst ◽  
2019 ◽  
Vol 144 (14) ◽  
pp. 4194-4203 ◽  
Author(s):  
Eric Besson ◽  
Stéphane Gastaldi ◽  
Emily Bloch ◽  
Jacek Zielonka ◽  
Monika Zielonka ◽  
...  

Mesoporous silica functionalised with a cyclic spin trap enabled the identification of a wide range of radicals in organic and aqueous media, including superoxide radical anion.


1982 ◽  
Vol 60 (12) ◽  
pp. 1587-1593 ◽  
Author(s):  
M John Perkins ◽  
Harparkash Kaur

A personal view of early experiments which led to the use of C-nitroso-compounds as spin traps is presented, and it is shown how these experiments resulted in the first isolation, and subsequent investigation, of acyl nitroxide radicals: the use of 1-methyl-4-nitroso-3,5-diphenylpyrazole as a spin trap, and the preparation and preliminary investigation of its water-soluble analogue (1) are described.


1982 ◽  
Vol 60 (12) ◽  
pp. 1549-1559 ◽  
Author(s):  
Kamil V Ettinger ◽  
Alexander R Forrester ◽  
Charles H Hunter

The chemical origin of lyoluminescence has been probed using spin trapping techniques. Radicals derived from amino acids and saccharides by γ-irradiation in the solid state have been identified after trapping with aliphatic and aromatic nitroso compounds. Most of the radicals trapped were secondary alkyl radicals. Reaction of peroxyl radicals derived therefrom are thought to produce the emitting species (excited carbonyl compound and/or singlet oxygen). The effect which thermal annealing of the solids after γ-irradiation has on (a) the concentration of radicals in the solid, (b) the concentration of trapped radicals, and (c) the light yield has been investigated. One new water-soluble spin trap has been prepared.


1989 ◽  
Vol 261 (3) ◽  
pp. 831-839 ◽  
Author(s):  
W D Flitter ◽  
R P Mason

The reaction of the hydroxyl radical, generated by a Fenton system, with pyrimidine deoxyribonucleotides was investigated by using the e.s.r. technique of spin trapping. The spin trap t-nitrosobutane was employed to trap secondary radicals formed by the reaction of the hydroxyl radical with these nucleotides. The results presented here show that hydroxyl-radical attack on thymidine, 2-deoxycytidine 5-monophosphate and 2-deoxyuridine 5-monophosphate produced nucleotide-derived free radicals. The results indicate that .OH radical attack occurs predominantly at the carbon-carbon double bond of the pyrimidine base. The e.s.r. studies showed a good correlation with previous results obtained by authors who used x- or gamma-ray irradiation to generate the hydroxyl radical. A thiobarbituric acid assay was also used to monitor the damage produced to the nucleotides by the Fenton system. These results showed qualitative agreement with the spin-trapping studies.


2002 ◽  
Vol 365 (2) ◽  
pp. 461-469 ◽  
Author(s):  
Yeong-Renn CHEN ◽  
Ronald P. MASON

Organic hydroperoxides are of great utility in probing the reaction mechanism and the toxicological consequences of lipid peroxidation. In the present study, ESR spin-trapping was employed to investigate the peroxidation of mitochondrial cytochrome c oxidase (CcO) with t-butyl hydroperoxide (t-BuOOH) and cumene hydroperoxide (CumOOH). The spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was used to detect the radical species formed from the reaction of CcO with t-BuOOH. The presence of t-BuOOH-derived alkoxyl radical (t-BuO˙) as the primary radical indicates reductive scission of the O—O bond by CcO. The ESR signal of DMPO/˙Ot-Bu can be partially abolished by cyanide, implying that the reductive cleavage involved the haem a3CuB binuclear site of CcO. A nitroso spin trap, 2-methyl-2-nitrosopropane (MNP), was used to detect and identify radical species from the reaction of CcO with CumOOH. In addition to the t-BuOOH-derived methyl, hydroxylmethyl and tertiary carbon-centred radicals, a protein-derived radical was detected. The intensity of the ESR signal from the protein radical increased with the CumOOH concentration at low CumOOH/CcO ratios, with maximal intensity at a ratio of 100mol of CumOOH/mol of CcO. The immobilized protein radical adduct of MNP was stable and persistent after dialysis; it was also resistant to proteolytic digestion, suggesting that it was formed in the transmembrane region, a region that is not accessible to proteases. Its signal was greatly enhanced when CcO cysteine residues were chemically modified by N-ethylmaleimide, when the tryptophan residues in CcO were oxidized by N-bromosuccimide, and when tyrosine residues on the surface of CcO were iodinated, showing that a radical equilibrium was established among the cysteine, tryptophan and tyrosine residues of the protein-centred radical. Pre-treatment of CcO with cyanide prevented detectable MNP adduct formation, confirming that the haem a3-CuB binuclear centre was the initial reaction site. When the CcO was pre-treated with 10mM (100 equivalents) of CumOOH, the enzyme activity decreased by more than 20%. This inhibition was persistent after dialysis, suggesting that the detected protein-centred radical was, in part, involved in the irreversible inactivation by CumOOH. Visible spectroscopic analysis revealed that the haem a of CcO was not affected during the reaction. However, the addition of pyridine to the reaction mixture under alkaline conditions resulted in the destruction of the haem centre of CcO, suggesting that its protein matrix rather than its haem a is the target of oxidative damage by the organic hydroperoxide.


Sign in / Sign up

Export Citation Format

Share Document