organic hydroperoxides
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 8)

H-INDEX

43
(FIVE YEARS 0)

2021 ◽  
Vol 22 (18) ◽  
pp. 9921
Author(s):  
Guang-Huey Lin ◽  
Ming-Chuan Hsieh ◽  
Hung-Yu Shu

Most bacteria possess alcohol dehydrogenase (ADH) genes (Adh genes) to mitigate alcohol toxicity, but these genes have functions beyond alcohol degradation. Previous research has shown that ADH can modulate quorum sensing in Acinetobacter baumannii, a rising opportunistic pathogen. However, the number and nature of Adh genes in A. baumannii have not yet been fully characterized. We identified seven alcohol dehydrogenases (NAD+-ADHs) from A. baumannii ATCC 19606, and examined the roles of three iron-containing ADHs, ADH3, ADH4, and ADH6. Marker-less mutation was used to generate Adh3, Adh4, and Adh6 single, double, and triple mutants. Disrupted Adh4 mutants failed to grow in ethanol-, 1-butanol-, or 1-propanol-containing mediums, and recombinant ADH4 exhibited strongest activity against ethanol. Stress resistance assays with inorganic and organic hydroperoxides showed that Adh3 and Adh6 were key to oxidative stress resistance. Virulence assays performed on the Galleria mellonella model organism revealed that Adh4 mutants had comparable virulence to wild-type, while Adh3 and Adh6 mutants had reduced virulence. The results suggest that ADH4 is primarily involved in alcohol metabolism, while ADH3 and ADH6 are key to stress resistance and virulence. Further investigation into the roles of other ADHs in A. baumannii is warranted.



Talanta ◽  
2021 ◽  
pp. 122699
Author(s):  
Rebeca Jiménez-Pérez ◽  
Jesús Iniesta ◽  
María Teresa Baeza-Romero ◽  
Edelmira Valero


Author(s):  
AS Shcheglov AS ◽  
AS Tsarkova

Ferroptosis is a form of programmed cell death associated with iron-dependent lipid peroxidation. Novel ferroptosis inducers and suppressors could be instrumental in developing drugs against neurodegenerative disorders and cancer. Prior to embarking on a search for ferroptosis inducers/suppressors, this form of cell death must be studied in living cells and laboratory animals. In addition to two cofactors, luciferase (or photoprotein) of the parchment tubeworm Chaetopterus variopedatus requires the presence of iron ions and hydrogen peroxide or organic hydroperoxides to exert its activity. Therefore, the bioluminescence system of the parchment tubeworm can be used to study ferroptosis in living organisms.



2021 ◽  
Vol 12 ◽  
Author(s):  
Aiqi Hu ◽  
Xiaohong Chen ◽  
Sha Luo ◽  
Qian Zou ◽  
Jing Xie ◽  
...  

Glutathione (GSH) plays a key role in regulating the cellular Redox Homeostasis, and appears to be essential for initiation and development of root nodules. Glutathione peroxidase (Gpx) catalyzes the reduction of H2O2 and organic hydroperoxides by oxidation of GSH to oxidized GSH (GSSG), which in turn is reduced by glutathione reductase (GR). However, it has not been determined whether the Rhizobium leguminosarum Gpx or GR is required during symbiotic interactions with pea. To characterize the role of glutathione-dependent enzymes in the symbiotic process, single and double mutants were made in gpxA (encoding glutathione peroxidase) and gshR (encoding glutathione reductase) genes. All the mutations did not affect the rhizobial growth, but they increased the sensitivity of R. leguminosarum strains to H2O2. Mutant in GpxA had no effect on intracellular GSH levels, but can increase the expression of the catalase genes. The gshR mutant can induce the formation of normal nodules, while the gpxA single and double mutants exhibited a nodulation phenotype coupled to more than 50% reduction in the nitrogen fixation capacity, these defects in nodulation were characterized by the formation of ineffective nodules. In addition, the gpxA and gshR double mutant was severely impaired in rhizosphere colonization and competition. Quantitative proteomics using the TMT labeling method was applied to study the differential expression of proteins in bacteroids isolated from pea root nodules. A total of 27 differentially expressed proteins were identified in these root bacteroids including twenty down-regulated and seven up-regulated proteins. By sorting the down-regulated proteins, eight are transporter proteins, seven are dehydrogenase, deoxygenase, oxidase, and hydrolase. Moreover, three down-regulating proteins are directly involved in nodule process.



2020 ◽  
Author(s):  
Kelvin Bates ◽  
Daniel Jacob ◽  
Eleni Dovrou ◽  
Frank Keutsch


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 918
Author(s):  
Anton Misak ◽  
Vlasta Brezova ◽  
Marian Grman ◽  
Lenka Tomasova ◽  
Miroslav Chovanec ◽  
...  

Lipid hydroperoxides play an important role in various pathophysiological processes. Therefore, a simple model for organic hydroperoxides could be helpful to monitor the biologic effects of endogenous and exogenous compounds. The electron paramagnetic resonance (EPR) spin-trapping technique is a useful method to study superoxide (O2•−) and hydroxyl radicals. The aim of our work was to use EPR with the spin trap 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO), which, by trapping O2•− produces relatively stable •BMPO-OOH spin-adduct, a valuable model for organic hydroperoxides. We used this experimental setup to investigate the effects of selected sulfur/selenium compounds on •BMPO-OOH and to evaluate the antioxidant potential of these compounds. Second, using the simulation of time-dependent individual BMPO adducts in the experimental EPR spectra, the ratio of •BMPO-OH/•BMPO-OOH—which is proportional to the transformation/decomposition of •BMPO-OOH—was evaluated. The order of potency of the studied compounds to alter •BMPO-OOH concentration estimated from the time-dependent •BMPO-OH/•BMPO-OOH ratio was as follows: Na2S4 > Na2S4/SeO32− > H2S/SeO32− > Na2S2 ~Na2S2/SeO32− ~H2S > SeO32− ~SeO42− ~control. In conclusion, the presented approach of the EPR measurement of the time-dependent ratio of •BMPO-OH/•BMPO-OOH could be useful to study the impact of compounds to influence the transformation of •BMPO-OOH.



2020 ◽  
Vol 24 (7) ◽  
pp. 1321-1327
Author(s):  
Gregory L. Beutner ◽  
Sloan Ayers ◽  
Tao Chen ◽  
Simon W. Leung ◽  
Hua Chia Tai ◽  
...  


2019 ◽  
Vol 201 (21) ◽  
Author(s):  
Shanti Pandey ◽  
Gyan S. Sahukhal ◽  
Mohamed O. Elasri

ABSTRACT Staphylococcus aureus has evolved a complex regulatory network that controls a multitude of defense mechanisms against the deleterious effects of oxidative stress stimuli, subsequently leading to the pathogen’s survival and persistence in the hosts. Previously, we characterized the msaABCR operon as a regulator of virulence, antibiotic resistance, and the formation of persister cells in S. aureus. Deletion of the msaABCR operon resulted in the downregulation of several genes involved in resistance against oxidative stress. Notably, those included carotenoid biosynthetic genes and the ohr gene, which is involved in resistance against organic hydroperoxides. These findings led us to hypothesize that the msaABCR operon is involved in resisting oxidative stress generated in the presence of both H2O2 and organic hydroperoxides. Here, we report that a protein product of the msaABCR operon (MsaB) transcriptionally regulates the expression of the crtOPQMN operon and the ohr gene to resist in vitro oxidative stresses. In addition to its direct regulation of the crtOPQMN operon and ohr gene, we also show that MsaB is the transcriptional repressor of sarZ (repressor of ohr). Taken together, these results suggest that the msaABCR operon regulates an oxidative stress defense mechanism, which is required to facilitate persistent and recurrent staphylococcal infections. Moving forward, we plan to investigate the role of msaABCR in the persistence of S. aureus under in vivo conditions. IMPORTANCE This study shows the involvement of the msaABCR operon in resisting oxidative stress by Staphylococcus aureus generated under in vitro and ex vivo conditions. We show that MsaB regulates the expression and production of a carotenoid pigment, staphyloxanthin, which is a potent antioxidant in S. aureus. We also demonstrate that MsaB regulates the ohr gene, which is involved in defending against oxidative stress generated by organic hydroperoxides. This study highlights the importance of msaABCR in the survival of S. aureus in the presence of various environmental stimuli that mainly exert oxidative stress. The findings from this study indicate the possibility that msaABCR is involved in the persistence of staphylococcal infections and therefore could be a potential antimicrobial target to overcome recalcitrant staphylococcal infections.



Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2826 ◽  
Author(s):  
Weihua Wang ◽  
Yuhua Wang ◽  
Wenling Feng ◽  
Wenliang Wang ◽  
Ping Li

Acquiring full knowledge of the reactivity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is crucial for the better understanding of the transformation and degradation of TCDD-like dioxins in the environment. To clarify the reactivity of the organic hydroperoxides toward TCDD, in this study, the reactions between the neutral/anion of the hydrogen peroxide (H2O2) and TCDD have been systematically investigated theoretically. It was found that the neutral H2O2 is relatively difficult to react with TCDD compared with its anion, exhibiting the pH dependence of the title reaction. As for the anion of H2O2, it reacts with TCDD through two reaction mechanisms, i.e., nucleophilic substitution and nucleophilic addition. For the former, the terminal O atom of HO2− nucleophilically attacks the C atom of the C-Cl bond in TCDD to form an intermediate containing an O-O bond, accompanying the dissociation of the chlorine atom. For the latter, the terminal O atom of HO2− can be easily attached to the C atom of the C-O bond in TCDD, resulting in the decomposition of C-O bond and the formation of an intermediate containing an O-O bond. For these formed intermediates in both reaction mechanisms, their O-O bonds can be homolytically cleaved to produce different radicals. In addition, the selected substitution effects including F-, Br-, and CH3- substituents on the above reactions have also been studied. Hopefully, the present results can provide new insights into the reactivity of the organic hydroperoxides toward TCDD-like environmental pollutants.



Sign in / Sign up

Export Citation Format

Share Document