pyrimidine nucleotide
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 40)

H-INDEX

36
(FIVE YEARS 5)

Author(s):  
Maher A Shahrour ◽  
Francesco Massimo Lasorsa ◽  
Vito Porcelli ◽  
Imad Dweikat ◽  
Maria Antonietta Di Noia ◽  
...  

Abstract Context The hyperinsulinism/hyperammonemia (HI/HA) syndrome, the second most common form of congenital hyperinsulinism, has been associated to dominant mutations in GLUD1, coding for the mitochondrial enzyme glutamate dehydrogenase, that increase enzyme activity by reducing its sensitivity to allosteric inhibition by GTP. Objective To identify the underlying genetic aetiology in two siblings who presented with the biochemical features of HI/HA syndrome but did not carry pathogenic variants in GLUD1, and to determine the functional impact of the newly identified mutation. Main Outcome Measures The patients were investigated by whole exome sequencing. Yeast complementation studies and biochemical assays on the recombinant mutated protein were performed. The consequences of stable slc25a36 silencing in HeLa cells were also investigated. Results A homozygous splice site variant was identified in solute carrier family 25, member 36 (SLC25A36), encoding the pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine as well as guanine nucleotides across the inner mitochondrial membrane. The mutation leads to a 26 aa in-frame deletion in the first repeat domain of the protein which abolished transport activity. Furthermore, knockdown of slc25a36 expression in HeLa cells caused a marked reduction in the mitochondrial GTP content which likely leads to an hyperactivation of glutamate dehydrogenase in our patients. Conclusions We report for the first time a mutation in PNC2/SLC25A36 leading to HI/HA and provide functional evidence of the molecular mechanism responsible for this phenotype. Our findings underscore the importance of mitochondrial nucleotide metabolism and expand the role of mitochondrial transporters in insulin secretion.


2021 ◽  
Author(s):  
Diana D. Shi ◽  
Milan R. Savani ◽  
Michael M. Levitt ◽  
Adam C. Wang ◽  
Jennifer E. Endress ◽  
...  

Mutations affecting isocitrate dehydrogenase (IDH) enzymes are prevalent in glioma, leukemia, and other cancers. Although mutant IDH inhibitors are effective against leukemia, they appear less active in aggressive glioma, underscoring the need for alternative treatment strategies. Through a chemical synthetic lethality screen, we discovered that IDH1 mutant glioma cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH). We developed a genetically engineered mouse model of mutant IDH1-driven astrocytoma and used it and multiple patient-derived models to show that the brain-penetrant DHODH inhibitor BAY 2402234 displays monotherapy efficacy against IDH mutant gliomas. Mechanistically, this vulnerability selectively applies to de novo pyrimidine, but not purine, synthesis because glioma cells engage disparate programs to produce these nucleotide species and because IDH oncogenes increase DNA damage upon nucleotide pool imbalance. Our work outlines a tumor-selective, biomarker-guided therapeutic strategy that is poised for clinical translation.


2021 ◽  
Vol 10 (22) ◽  
pp. 5416
Author(s):  
Giuseppe Nicolò Fanelli ◽  
Rosa Scarpitta ◽  
Paola Cinacchi ◽  
Beatrice Fuochi ◽  
Anna Szumera-Ciećkiewicz ◽  
...  

Breast cancer (BC) is the most frequent non-cutaneous malignancy in women. Histological grade, expression of estrogen and progesterone receptors (ER and PgR), overexpression/amplification of the human epidermal growth factor receptor 2 (HER2) oncogene, and proliferative activity measured with ki-67 provide important information on the biological features of BC and guide treatment choices. However, a biomarker that allows a more accurate prognostic stratification is still lacking. Thymidine kinase-1 (TK1), a ubiquitous enzyme involved in the pyrimidine nucleotide recovery pathway, is a cell-proliferation marker with potential prognostic and predictive impacts in BC. Eighty (80) cases of invasive BC with a long-term follow-up were retrospectively selected, and clinicopathological data were collected for each patient. TK1 tissue expression was evaluated immunohistochemically. Data suggested that TK1 expression levels are positively correlated with ER and PgR expression, and negatively correlated with HER2 status and the impact on patients' distant recurrence-free survival (DRFS): in detail, among patients undergoing adjuvant chemotherapy, lower TK1 levels are correlated with better DRFS. Therefore, these results contribute to furthering the knowledge of TK1, suggesting a possible and important role of this enzyme as a biomarker in the stratification of BC patients.


2021 ◽  
Vol 22 (19) ◽  
pp. 10253
Author(s):  
Guanya Li ◽  
Dunhui Li ◽  
Tao Wang ◽  
Shanping He

CAD (Carbamoyl-phosphate synthetase 2, Aspartate transcarbamoylase, and Dihydroorotase) is a multifunctional protein that participates in the initial three speed-limiting steps of pyrimidine nucleotide synthesis. Over the past two decades, extensive investigations have been conducted to unmask CAD as a central player for the synthesis of nucleic acids, active intermediates, and cell membranes. Meanwhile, the important role of CAD in various physiopathological processes has also been emphasized. Deregulation of CAD-related pathways or CAD mutations cause cancer, neurological disorders, and inherited metabolic diseases. Here, we review the structure, function, and regulation of CAD in mammalian physiology as well as human diseases, and provide insights into the potential to target CAD in future clinical applications.


2021 ◽  
Vol 22 (18) ◽  
pp. 9929
Author(s):  
Luisa Jasper ◽  
Pasquale Scarcia ◽  
Stephan Rust ◽  
Janine Reunert ◽  
Ferdinando Palmieri ◽  
...  

SLC25A36 is a pyrimidine nucleotide carrier playing an important role in maintaining mitochondrial biogenesis. Deficiencies in SLC25A36 in mouse embryonic stem cells have been associated with mtDNA depletion as well as mitochondrial dysfunction. In human beings, diseases triggered by SLC25A36 mutations have not been described yet. We report the first known case of SLC25A36 deficiency in a 12-year-old patient with hypothyroidism, hyperinsulinism, hyperammonemia, chronical obstipation, short stature, along with language and general developmental delay. Whole exome analysis identified the homozygous mutation c.803dupT, p.Ser269llefs*35 in the SLC25A36 gene. Functional analysis of mutant SLC25A36 protein in proteoliposomes showed a virtually abolished transport activity. Immunoblotting results suggest that the mutant SLC25A36 protein in the patient undergoes fast degradation. Supplementation with oral uridine led to an improvement of thyroid function and obstipation, increase of growth and developmental progress. Our findings suggest an important role of SLC25A36 in hormonal regulations and oral uridine as a safe and effective treatment.


2021 ◽  
Vol 12 (9) ◽  
Author(s):  
Yajie Yu ◽  
Jane Ding ◽  
Shunqin Zhu ◽  
Ahmet Alptekin ◽  
Zheng Dong ◽  
...  

AbstractMetabolic reprogramming is an integral part of the growth-promoting program driven by the MYC family of oncogenes. However, this reprogramming also imposes metabolic dependencies that could be exploited therapeutically. Here we report that the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is an attractive therapeutic target for MYCN-amplified neuroblastoma, a childhood cancer with poor prognosis. Gene expression profiling and metabolomic analysis reveal that MYCN promotes pyrimidine nucleotide production by transcriptional upregulation of DHODH and other enzymes of the pyrimidine-synthesis pathway. Genetic and pharmacological inhibition of DHODH suppresses the proliferation and tumorigenicity of MYCN-amplified neuroblastoma cell lines. Furthermore, we obtain evidence suggesting that serum uridine is a key factor in determining the efficacy of therapeutic agents that target DHODH. In the presence of physiological concentrations of uridine, neuroblastoma cell lines are highly resistant to DHODH inhibition. This uridine-dependent resistance to DHODH inhibitors can be abrogated by dipyridamole, an FDA-approved drug that blocks nucleoside transport. Importantly, dipyridamole synergizes with DHODH inhibition to suppress neuroblastoma growth in animal models. These findings suggest that a combination of targeting DHODH and nucleoside transport is a promising strategy to overcome intrinsic resistance to DHODH-based cancer therapeutics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xianbo Jia ◽  
Fangchen Liu ◽  
Ke Zhao ◽  
Junjie Lin ◽  
Yu Fang ◽  
...  

Prodigiosin is a promising secondary metabolite produced mainly by Serratia strains. To study the global regulatory mechanism of prodigiosin biosynthesis, a mutagenesis library containing 23,000 mutant clones was constructed with the EZ-Tn5 transposon, and 114 clones in the library showed altered prodigiosin production ability. For 37 of the 114 clones, transposon insertion occurred on the prodigiosin biosynthetic cluster genes; transposon inserted genes of the 77 clones belonged to 33 different outside prodigiosin biosynthetic cluster genes. These 33 genes can be divided into transcription-regulating genes, membrane protein-encoding genes, and metabolism enzyme-encoding genes. Most of the genes were newly reported to be involved in prodigiosin production. Transcriptional levels of the pigA gene were significantly downregulated in 22 mutants with different inserted genes, which was in accordance with the phenotype of decreased prodigiosin production. Functional confirmation of the mutant genes involved in the pyrimidine nucleotide biosynthesis pathway was carried out by adding orotate and uridylate (UMP) into the medium. Gene complementation confirmed the regulatory function of the EnvZ/OmpR two-component regulatory system genes envZ and ompR in prodigiosin production.


Sign in / Sign up

Export Citation Format

Share Document