Effects of anesthetics on sodium uptake into rat brain cortex in vitro

1972 ◽  
Vol 21 (12) ◽  
pp. 1763-1773 ◽  
Author(s):  
R. Shankaran ◽  
J.H. Quastel
1963 ◽  
Vol 41 (2) ◽  
pp. 435-454 ◽  
Author(s):  
O. Gonda ◽  
J. H. Quastel

The effects of acetylsalicylate and of 2,4-dinitrophenol on the metabolism and transport processes of rat brain cortex slices incubated at 37° in glucose–Ringer media under various conditions have been investigated. The following processes are suppressed by acetylsalicylate (5 mM) or dinitrophenol (0.05 mM) to a much greater extent in media containing 105 mM KCl or 10 mM NH4Cl (which stimulate brain respiration) than in normal media:(a) respiration;(b) incorporation of phosphate into ATP and ADP;(c) conversion of creatine to phosphocreatine;(d) uptake of glutamate or of creatine from the medium to the tissue.The two drugs increase the leakage of amino acids from rat brain cortex slices into the medium, the effects being greatest in the presence of 105 mM KCl or 5 mM glutamate or in the absence of glucose. They change the yields of labelled amino acids from labelled glucose or labelled glutamate.Labelled glutamate is converted to labelled aspartate, γ-aminobutyrate and glutamine in rat brain cortex slices, the addition of glucose bringing about increased yields of glutamine and γ-aminobutyrate and a decreased yield of aspartate. The formation of labelled glutamine from either labelled glutamate or from labelled glucose is suppressed by acetylsalicylate or dinitrophenol, the effects being greater in the presence of 105 mM KCl or 10 mM NH4Cl.The increased sensitivity of the stimulated tissue metabolism to the drugs, in the presence of high K+, or of NH4+or of glutamate, is probably explained by the fact that there is a fall, under these conditions, in the tissue phosphocreatine level. There is, therefore, less reserve phosphocreatine to maintain the level of ATP when neuronal oxidative phosphorylation is suppressed by the addition of acetylsalicylate or of dinitrophenol.


FEBS Letters ◽  
1987 ◽  
Vol 219 (2) ◽  
pp. 296-300 ◽  
Author(s):  
F. Bauché ◽  
A.M. Bourdeaux-Jaubert ◽  
Y. Giudicelli ◽  
R. Nordmann

1956 ◽  
Vol 17 (5) ◽  
pp. 666-671 ◽  
Author(s):  
Ian Cameron Geddes ◽  
Juda Hirsch Quastel

1972 ◽  
Vol 50 (6) ◽  
pp. 654-662 ◽  
Author(s):  
Alexander Jakubovič ◽  
Patrick L. McGeer

The effect of Δ9-tetrahydrocannabinol (THC), cannabidiol, and cannabigerol on some metabolic processes in infant and adult rat brain cortex slices was studied in vitro. With L-leucine-U-14C as the tracer substrate, the incorporation of radioactivity into the protein and nucleic acid fractions was significantly inhibited by THC. The oxygen consumption of the slices, the uptake of L-leucine into the slices, and the evolution of 14CO2 were, however, unaffected by THC. Cannabidiol was comparable in activity to THC but cannabigerol was less active. The pattern of inhibition by THC was also observed when the rat brain cortex slices were stimulated by 100 mM K+ or 10 μM protoveratrine. THC also brought about a significant decrease in the incorporation of uridine-2-14C into the nucleic acid fraction of infant and adult rat brain cortex slices. There was a decreased formation of uridine nucleotides in the presence of THC and an increase in uridine and uracil in the low molecular weight fraction. Experiments with THC-2,4-14C established that there was rapid uptake and a concentration of radioactivity in the incubated brain tissue.


Sign in / Sign up

Export Citation Format

Share Document