Effects of antirheumatic drugs on sponge-induced granulation tissue, rheumatoid synovial tissue, matrix-free tendon cells and fibroblast plasma membranes in vitro

1975 ◽  
Vol 24 (18) ◽  
pp. 1671-1678 ◽  
Author(s):  
Eino Kulonen ◽  
Marita Potila
1975 ◽  
Vol 146 (3) ◽  
pp. 565-573 ◽  
Author(s):  
P Lehtinen ◽  
E Vuorio ◽  
E Kulonen

1. A procedure was developed for the preparation of plasma membranes from experimental granulation tissue of the rat without the addition of enzymes. The yield is better than 20% and the purification at least tenfold. 2. Values are given for the activities of 5′-nucleotidase, Na-+, k-+-activated Mg-2+dependent adenosine triphosphatase and leucine β-naphthylamidase, for lipid composition, and for the gel-electrophoretic patterns of proteins and glycoporteins in the membrane preparations. 3. The plasma membranes from the mature granulation tissue contain proportionally more protein in the lipid phase, but the specific activities of 5′-nucleotidase and Na-+,K-+-activated Mg-2+-dependent adenosine triphosphatase are smaller than in the proliferating tissue. Certain differences were repeatedly observed in the gel-electrophoretic patterns of the developmental phases. 4. The plasma membranes from the granulation tissue were compared with those from rat peritoneal macrophages and from embryonic-chick tendon cells.


1981 ◽  
Vol 14 (2) ◽  
pp. 183-192 ◽  
Author(s):  
L. KLARESKOG ◽  
U. FORSUM ◽  
U. MALMNAS TJERNLUND ◽  
D. KABELITZ ◽  
A. WIGREN

2001 ◽  
Vol 44 (9) ◽  
pp. 2046-2054 ◽  
Author(s):  
Beate B. B�hm ◽  
Thomas Aigner ◽  
Carl P. Blobel ◽  
Joachim R. Kalden ◽  
Harald Burkhardt

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 397
Author(s):  
Gradimir Misevic ◽  
Emanuela Garbarino

Glycan-to-glycan binding was shown by biochemical and biophysical measurements to mediate xenogeneic self-recognition and adhesion in sponges, stage-specific cell compaction in mice embryos, and in vitro tumor cell adhesion in mammals. This intermolecular recognition process is accepted as the new paradigm accompanying high-affinity and low valent protein-to-protein and protein-to-glycan binding in cellular interactions. Glycan structures in sponges have novel species-specific sequences. Their common features are the large size >100 kD, polyvalency >100 repeats of the specific self-binding oligosaccharide, the presence of fucose, and sulfated and/or pyruvylated hexoses. These structural and functional properties, different from glycosaminoglycans, inspired their classification under the glyconectin name. The molecular mechanism underlying homophilic glyconectin-to-glyconectin binding relies on highly polyvalent, strong, and structure-specific interactions of small oligosaccharide motifs, possessing ultra-weak self-binding strength and affinity. Glyconectin localization at the glycocalyx outermost cell surface layer suggests their role in the initial recognition and adhesion event during the complex and multistep process. In mammals, Lex-to-Lex homophilic binding is structure-specific and has ultra-weak affinity. Cell adhesion is achieved through highly polyvalent interactions, enabled by clustering of small low valent structure in plasma membranes.


1967 ◽  
Vol 105 (1) ◽  
pp. 333-341 ◽  
Author(s):  
Kirsti Lampiaho ◽  
E. Kulonen

1. The metabolism of incubated slices of sponge-induced granulation tissue, harvested 4–90 days after the implantation, was studied with special reference to the capacity of collagen synthesis and to the energy metabolism. Data are also given on the nucleic acid contents during the observation period. Three metabolic phases were evident. 2. The viability of the slices for the synthesis of collagen was studied in various conditions. Freezing and homogenization destroyed the capacity of the tissue to incorporate proline into collagen. 3. Consumption of oxygen reached the maximum at 30–40 days. There was evidence that the pentose phosphate cycle was important, especially during the phases of the proliferation and the involution. The formation of lactic acid was maximal at about 20 days. 4. The capacity to incorporate proline into collagen hydroxyproline in vitro was limited to a relatively short period at 10–30 days. 5. The synthesis of collagen was dependent on the supply of oxygen and glucose, which latter could be replaced in the incubation medium by other monosaccharides but not by the metabolites of glucose or tricarboxylic acid-cycle intermediates.


1997 ◽  
Vol 137 (7) ◽  
pp. 1537-1553 ◽  
Author(s):  
Nedra F. Wilson ◽  
Mary J. Foglesong ◽  
William J. Snell

In the biflagellated alga Chlamydomonas, adhesion and fusion of the plasma membranes of gametes during fertilization occurs via an actin-filled, microvillus-like cell protrusion. Formation of this ∼3-μm-long fusion organelle, the Chlamydomonas fertilization tubule, is induced in mating type plus (mt+) gametes during flagellar adhesion with mating type minus (mt−) gametes. Subsequent adhesion between the tip of the mt+ fertilization tubule and the apex of a mating structure on mt− gametes is followed rapidly by fusion of the plasma membranes and zygote formation. In this report, we describe the isolation and characterization of fertilization tubules from mt+ gametes activated for cell fusion. Fertilization tubules were detached by homogenization of activated mt+ gametes in an EGTA-containing buffer and purified by differential centrifugation followed by fractionation on sucrose and Percoll gradients. As determined by fluorescence microscopy of samples stained with a fluorescent probe for filamentous actin, the method yielded 2–3 × 106 fertilization tubules/μg protein, representing up to a 360-fold enrichment of these organelles. Examination by negative stain electron microscopy demonstrated that the purified fertilization tubules were morphologically indistinguishable from fertilization tubules on intact, activated mt+ gametes, retaining both the extracellular fringe and the internal array of actin filaments. Several proteins, including actin as well as two surface proteins identified by biotinylation studies, copurified with the fertilization tubules. Most importantly, the isolated mt+ fertilization tubules bound to the apical ends of activated mt− gametes between the two flagella, the site of the mt− mating structure; a single fertilization tubule bound per cell, binding was specific for gametes, and fertilization tubules isolated from trypsin-treated, activated mt+ gametes did not bind to activated mt− gametes.


Sign in / Sign up

Export Citation Format

Share Document