Structural and electrophysiological properties of nymphal and adult insect medial neurosecretory cells: AnIn vitro analysis

1974 ◽  
Vol 78 (3) ◽  
pp. 359-376 ◽  
Author(s):  
K.R. Seshan ◽  
R.R. Provine ◽  
R. Levi-Montalcini
1993 ◽  
Vol 183 (1) ◽  
pp. 323-339
Author(s):  
W. Rossler ◽  
U. Bickmeyer

The medial neurosecretory cells of the pars intercerebralis in the protocerebrum of larval and adult locusts (Locusta migratoria) were cultured in a chemically defined serum-free culture medium. The morphology of the cells was investigated by light microscopy and the electrophysiological properties were studied using the patch-clamp technique in the whole-cell configuration. The dissociated neurosecretory cells grew new processes under these conditions and were maintained in culture for up to 2 months. The percentage of cells showing outgrowth was significantly higher in third-instar larvae than in instars 4 and 5 and adults. A primary axonal stump promoted a unipolar cell morphology; in other cases, most neurosecretory cells became multipolar. The presence of glial cells in undissociated groups of neurosecretory cells improved outgrowth and the formation of neurite bundles. A considerable number of the recorded cells showed spiking activity in response to depolarization. The influences of temperature on spike frequency, duration and amplitude as well as on membrane potential and ionic currents were investigated. The results suggest that temperature may directly affect the function of neurosecretory cells.


1993 ◽  
Vol 25 (6) ◽  
pp. 893-906 ◽  
Author(s):  
B. Lapied ◽  
F. Tribut ◽  
I. Sinakevitch ◽  
B. Hue ◽  
D.J. Beadle

Science ◽  
1973 ◽  
Vol 182 (4109) ◽  
pp. 291-293 ◽  
Author(s):  
K. R. Seshan ◽  
R. Levi-Montalcini

1992 ◽  
Vol 68 (1) ◽  
pp. 36-54 ◽  
Author(s):  
P. M. Ma ◽  
B. S. Beltz ◽  
E. A. Kravitz

1. The electrophysiological properties of two pairs of identified serotonin-containing neurons in the fifth thoracic (T5) and first abdominal (A1) ganglia of the lobster, Homarus americanus, were studied with the use of intracellular recording methods. Intracellular dye injection combined with immunocytochemistry verified the neurochemical status of the recorded neurons. 2. The serotonin-containing neurons usually are spontaneously active at 0.5-1.0 Hz and produce large, overshooting action potentials with a prominent after-hyperpolarization. The action potentials appear to be generated by a pacemaking mechanism endogenous to the cells. Extracellular recordings from thoracic connectives and from second thoracic roots show that action potentials from the cells in A1 and T5 are propagated rostrally along their axons and invade axon collaterals that innervate neurohemal organs in the second thoracic roots and the pericardial organs. These observations suggest that these serotonin-containing cells may function in part as important neurosecretory cells in the lobster. 3. Members of the pairs of serotonin-containing cells are not synaptically connected. They receive prominent inhibitory inputs in the form of inhibitory postsynaptic potentials (IPSPs), which exhibit discrete size classes and probably arise from several sources. Most IPSPs are temporally synchronized among the two pairs of serotonin-containing cells. 4. The serotonin-containing cells respond to stimulation of postural command fibers, with flexion command fibers exciting and extension command fibers inhibiting the cells, suggesting that these cells are a part of the postural flexion circuitry. 5. Intracellular activation or inhibition of the serotonin-containing cells has no effect on the spontaneous readout of postural motor programs recorded from motor nerve roots. Coactivation of the serotonin-containing cells and command fibers, or inhibition of the serotonin-containing cells while activating command fibers, however, shows that the cells act as “gain-setters,” modulating the interaction between command inputs and motoneuron outputs. 6. About 24% of the motor neuron units analyzed are influenced by the serotonin-containing cells. There is a bias toward facilitation of the readout of flexion motor programs, particularly with stimulation of strong and moderate flexion command fibers. 7. The serotonin-containing cells in T5 and A1 ganglia are hypothesized to serve two functions, one tonic and the other phasic, in modulating behavioral output in lobsters. Tonic firing of the cells should result in a sustained release of serotonin from central and peripheral sets of nerve terminals, which, in turn, could influence peripheral and central targets of the amine.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
R.A. Milligan ◽  
P.N.T. Unwin

A detailed understanding of the mechanism of protein synthesis will ultimately depend on knowledge of the native structure of the ribosome. Towards this end we have investigated the low resolution structure of the eukaryotic ribosome embedded in frozen buffer, making use of a system in which the ribosomes crystallize naturally.The ribosomes in the cells of early chicken embryos form crystalline arrays when the embryos are cooled at 4°C. We have developed methods to isolate the stable unit of these arrays, the ribosome tetramer, and have determined conditions for the growth of two-dimensional crystals in vitro, Analysis of the proteins in the crystals by 2-D gel electrophoresis demonstrates the presence of all ribosomal proteins normally found in polysomes. There are in addition, four proteins which may facilitate crystallization. The crystals are built from two oppositely facing P4 layers and the predominant crystal form, accounting for >80% of the crystals, has the tetragonal space group P4212, X-ray diffraction of crystal pellets demonstrates that crystalline order extends to ~ 60Å.


Author(s):  
M. Sato ◽  
Y. Ogawa ◽  
M. Sasaki ◽  
T. Matsuo

A virgin female of the noctuid moth, a kind of noctuidae that eats cucumis, etc. performs calling at a fixed time of each day, depending on the length of a day. The photoreceptors that induce this calling are located around the neurosecretory cells (NSC) in the central portion of the protocerebrum. Besides, it is considered that the female’s biological clock is located also in the cerebral lobe. In order to elucidate the calling and the function of the biological clock, it is necessary to clarify the basic structure of the brain. The observation results of 12 or 30 day-old noctuid moths showed that their brains are basically composed of an outer and an inner portion-neural lamella (about 2.5 μm) of collagen fibril and perineurium cells. Furthermore, nerve cells surround the cerebral lobes, in which NSCs, mushroom bodies, and central nerve cells, etc. are observed. The NSCs are large-sized (20 to 30 μm dia.) cells, which are located in the pons intercerebralis of the head section and at the rear of the mushroom body (two each on the right and left). Furthermore, the cells were classified into two types: one having many free ribosoms 15 to 20 nm in dia. and the other having granules 150 to 350 nm in dia. (Fig. 1).


Author(s):  
Seiji Shioda ◽  
Yasumitsu Nakai ◽  
Atsushi Ichikawa ◽  
Hidehiko Ochiai ◽  
Nobuko Naito

The ultrastructure of neurosecretory cells and glia cells in the supraoptic nucleus (SON) of the hypothalamus and the neurohypophysis (PN) was studied after rapid freezing followed by substituion fixation. Also, the ultrastructural localization of vasopressin (VP) or its carrier protein neurophys in II (NPII) in the SON and PN was demonstrated by using a post-embedding immunoco1loidal gold staining method on the tissue sections processed by rapid freezing and freeze-substitution fixation.Adult male Wistar rat hypothalamus and pituitary gland were quenched by smashing against a copper block surface precooled with liquid helium and freeze-substituted in 3% osmium tetroxide-acetone solutions kept at -80°C for 36-48h. After substituion fixation, the tissue blocks were warmed up to room temperature, washed in acetone and then embedded in an Epon-Araldite mixture. Ultrathin sections mounted on 200 mesh nickel grids were immersed in saturated sodium metaperiodate and then incubated in each of the following solutions: 1 % egg albumin in phosphate buffer, VP or NPII (1/1000-1/5000) antiserum 24h at 4°C, 3) colloidal gold solution (1/20) 1h at 20°C. The sections were washed with distilled waterand dried, then stained with uranylacetate and lead citrate and examined with Hitachi HU-12A and H-800 electron microscopes.


2005 ◽  
Vol 173 (4S) ◽  
pp. 315-316
Author(s):  
Kari Hendlin ◽  
Brynn Lund ◽  
Manoj Monga

Sign in / Sign up

Export Citation Format

Share Document