Neurotransmitter amino acids in the CNS. I. Regional changes in amino acid levels in rat brain during ischemia and reperfusion

1984 ◽  
Vol 304 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Maria Erecin´ska ◽  
David Nelson ◽  
David F. Wilson ◽  
Ian A. Silver
1991 ◽  
Vol 260 (3) ◽  
pp. E453-E458 ◽  
Author(s):  
Y. Ohtake ◽  
M. G. Clemens

This study was performed to investigate the interrelationship between gluconeogenesis and ureagenesis during sepsis. In isolated perfused livers, gluconeogenesis was assessed using either lactate or a combination of lactate, glutamine, and alanine as substrate. Ureagenesis was assessed using either NH4Cl or glutamine plus alanine as substrate. NH4Cl stimulated urea production in livers from both septic and sham-operated control rats. Urea release was approximately 1.2 and 2.0 mg urea nitrogen.g-1.h-1 for 1 and 5 mM NH4Cl, respectively, and was equal for both groups. With amino acids as substrate, urea production was significantly greater in livers from septic animals compared with controls. Phenylephrine stimulated urea production in the sham-operated group by about twofold, whereas in the septic group urea release was slightly inhibited. Gluconeogenesis from lactate was inhibited by NH4Cl (1 and 5 mM) in both groups, with no difference between groups. In contrast to enhanced ureagenesis from amino acids in septic rats, gluconeogenesis was decreased by approximately 24% (P less than 0.5). Similarly, phenylephrine (1 microM) stimulated gluconeogenesis by 13 +/- 1 mumol.g-1.h-1 in sham-operated rats but only by 9 +/- 1 mumol.g-1.h-1 in septic rats (P less than 0.02). These results suggest that hepatic gluconeogenic and ureagenic pathways are intact in sepsis but that altered substrate preference and hormone sensitivity may result in decreased gluconeogenesis in the presence of elevated amino acid levels.


2020 ◽  
Author(s):  
Charalampos Rallis ◽  
Michael Mülleder ◽  
Graeme Smith ◽  
Yan Zi Au ◽  
Markus Ralser ◽  
...  

AbstractAmino acid deprivation or supplementation can affect cellular and organismal lifespan, but we know little about the role of concentration changes in free, intracellular amino acids during aging. Here, we determine free amino-acid levels during chronological aging of non-dividing fission yeast cells. We compare wild-type with long-lived mutant cells that lack the Pka1 protein of the protein kinase A signalling pathway. In wild-type cells, total amino-acid levels decrease during aging, but much less so in pka1 mutants. Two amino acids strongly change as a function of age: glutamine decreases, especially in wild-type cells, while aspartate increases, especially in pka1 mutants. Supplementation of glutamine is sufficient to extend the chronological lifespan of wild-type but not of pka1Δ cells. Supplementation of aspartate, on the other hand, shortens the lifespan of pka1Δ but not of wild-type cells. Our results raise the possibility that certain amino acids are biomarkers of aging, and their concentrations during aging can promote or limit cellular lifespan.


1973 ◽  
Vol 103 (4) ◽  
pp. 608-617 ◽  
Author(s):  
Y. Peng ◽  
J. Gubin ◽  
A. E. Harper ◽  
M. G. Vavich ◽  
A. R. Kemmerer

1977 ◽  
Vol 27 ◽  
pp. 44
Author(s):  
Shiro Hisada ◽  
Hiromi Tsushima ◽  
Toshio Kamiya

1986 ◽  
Vol 250 (6) ◽  
pp. E686-E694 ◽  
Author(s):  
E. Ferrannini ◽  
E. J. Barrett ◽  
S. Bevilacqua ◽  
R. Jacob ◽  
M. Walesky ◽  
...  

Raised plasma free fatty acid (FFA) levels effectively impede glucose uptake in vivo, thereby conserving plasma glucose and sparing glycogen. To test whether FFA have any effect on blood amino acid levels, we infused Intralipid plus heparin or saline into healthy volunteers under four different experimental conditions: A) overnight fast; B) euglycemic hyperinsulinemia (approximately 100 microU/ml); C) hyperglycemic (approximately 200 mg/100 ml) hyperinsulinemia (approximately 50 microU/ml); and D) hyperglycemic (approximately 300 mg/100 ml) normoinsulinemia (approximately 20 microU/ml). In the fasting state (A), lipid infusion was associated with lower blood levels of most amino acids, both branched chain and glucogenic. This effect, however, could not be ascribed to lipid infusion alone, because plasma insulin levels were also stimulated. The clamp studies (B, C, and D) allowed to assess the influence of lipid on blood amino acid levels at similar plasma insulin and glucose levels. It was thus observed that lipid infusion has a significant hypoaminoacidemic effect of its own under both euglycemic (B) and hyperglycemic (C) conditions; this effect involved many glucogenic amino acids (alanine, glycine, phenylalanine, serine, threonine, and cystine) but none of the branched-chain amino acids (leucine, isoleucine, and valine). In marked contrast, normoinsulinemic hyperglycemia (D), with or without lipid infusion, caused no change in the blood level of any measured amino acid. We conclude that lipid infusion has a hypoaminoacidemic action. We also suggest that this action is permitted by insulin and may involve specific metabolic interactions (e.g., reduced availability of glucose-derived pyruvate or glycerophosphate) as well as enhanced uptake by the liver.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2603 ◽  
Author(s):  
Samuel H. Gunther ◽  
Chin Meng Khoo ◽  
Xueling Sim ◽  
E Shyong Tai ◽  
Rob M. van Dam

Profiles of circulating amino acids have been associated with cardiometabolic diseases. We investigated the associations between dietary protein intake, physical activity and adiposity and serum amino acid profiles in an Asian population. We used data from 3009 male and female participants from the Singapore Prospective Study Program cohort. Dietary and physical activity data were obtained from validated questionnaires; anthropometric measurements were collected during a health examination; and fasting concentrations of 16 amino acids were measured using targeted LC-MS. The association between lifestyle factors and amino acid levels was modeled using multiple linear regression with adjustment for other sociodemographic and lifestyle factors and correction for multiple testing. We observed significant associations between seafood intake (β-coefficient 0.132, 95% CI 0.006, 0.257 for a 100% increment), physical activity (β-coefficient −0.096, 95% CI −0.183, −0.008 in the highest versus lowest quartile) and adiposity (BMI β-coefficient 0.062, 95% CI 0.054, 0.070 per kg/m2; waist circumference β-coefficient 0.034, 95% CI 0.031, 0.037 per cm) and branched-chain amino acid levels (expressed per-SD). We also observed significant interactions with sex for the association between meat and seafood and total intakes and BCAA levels (P for interaction 0.007), which were stronger in females than in males. Our findings suggest novel associations between modifiable lifestyle factors and amino acid levels in Asian populations.


1981 ◽  
Vol 2 (3) ◽  
pp. 124-130 ◽  
Author(s):  
Paul F. Williams ◽  
Errol B. Marliss ◽  
G. Harvey Anderson ◽  
Arie Oren ◽  
Arthur N. Stein ◽  
...  

Six non-diabetic CAPD patients were infused over six hours with two litres of a dialysis solution containing 2 g/ dl amino acids (a mixture of essentials and non-essentials). The osmolality of the solution and the amount of ultrafiltration it induced were simiiar to that of a 4.25 g% dextrose Dianeal solution (control), suggesting that an amino acid solution is an efficient osmotic agent. By the end of the six-hour infusion, 80 to 90% of the amino acids present in the dialysis solution had been absorbed. One hour after the infusion was instituted, plasma amino acid levels increased threefold and subsequently decreased to near the initial value by the sixth hour. The amino acid solution was as effective as the dextrose solution in removing urea nitrogen, creatinine and potassium. Our data indicate that intraperitoneal administration of amino acids is effective and well-tolerated in patients on CAPD. We believe further work should be done to determine whether long-term administration of amino acids by this route will improve the nutritional status of these patients and prevent the side effects of daily absorption of large amounts of glucose.


Sign in / Sign up

Export Citation Format

Share Document