Loss of ocular dominance columns with maturity in the monkey, Callithrix jacchus

1989 ◽  
Vol 488 (1-2) ◽  
pp. 376-380 ◽  
Author(s):  
W.B. Spatz
2000 ◽  
Vol 17 (3) ◽  
pp. 345-352 ◽  
Author(s):  
CAROLINE FONTA ◽  
CATHERINE CHAPPERT ◽  
MICHEL IMBERT

We previously showed that immunoreactivity to N-Methyl-D-aspartate (NMDA) receptors in primary visual cortex of Callithrix jacchus is regulated by visual activity during the second and third postnatal months (Fonta et al., 1997). The purpose of the present study was to show that the columnar pattern of high and low NMDAR1 immunoreactivity observed in monocularly deprived animals corresponds to ocular dominance columns linked to the nondeprived and deprived eye, respectively. We compared cortical distribution of NMDAR1 receptors and the projection zones of thalamic afferents, revealed by transneuronal transport of tritiated proline, in 2-month-old, either monocularly deprived or control, marmosets. The data show that ocular dominance columns exist in 2-month-old marmosets and that a 2-week monocular deprivation by means of eyelid suture leads to a modification of the thalamo-cortical afferents organization. Experiments of neuronal tracing and immunohistochemistry performed on the same animals demonstrated that cortical domains with decreased NMDAR1 level correspond to the deprived eye columns. These investigations, coupled to the previous results, strongly suggest that the NMDA receptors, regulated by visual activity, are involved in the refining of ocular dominance columns in the primary visual cortex of juvenile marmoset.


2001 ◽  
Vol 18 (3) ◽  
pp. 407-412 ◽  
Author(s):  
CATHERINE CHAPPERT-PIQUEMAL ◽  
CAROLINE FONTA ◽  
FRANÇOIS MALECAZE ◽  
MICHEL IMBERT

In the marmoset Callithrix jacchus, ocular dominance columns (ODC) have been reported to be present in young animals, but absent in adults (Spatz, 1989). We have studied in juvenile and adult animals the postnatal organization of the retino-geniculo-cortical afferents by means of transneuronal labeling. We show in the present work that ODC are present in the primary visual cortex of Callithrix jacchus, both in the adult and in the juvenile animal. The present work confirms the presence of ODC in the visual cortex of juvenile marmoset before the end of the first postnatal month. In 2-month-old animals, ODC are well demarcated in IVcα and IVcβ. In the adult marmosets, the present data clearly show that the primary visual cortex is also organized with ODC. In horizontal sections, they form a mosaic through the ventral and dorsal calcarine cortex and through the dorso-lateral occipital part of the striate cortex. In frontal sections, their presence is manifest in IVcβ within the calcarine cortex and they only faintly appear in IVcα. These new findings are important since they underline the usefulness of the adult New World Monkeys as a model in visual research.


2002 ◽  
Vol 42 (19) ◽  
pp. 2295-2310 ◽  
Author(s):  
Greg A. Woodbury ◽  
Rick van der Zwan ◽  
William G. Gibson

2006 ◽  
Vol 96 (5) ◽  
pp. 2253-2264 ◽  
Author(s):  
Daniel L. Adams ◽  
Jonathan C. Horton

In many regions of the mammalian cerebral cortex, cells that share a common receptive field property are grouped into columns. Despite intensive study, the function of the cortical column remains unknown. In the squirrel monkey, the expression of ocular dominance columns is variable, with columns present in some animals and not in others. By searching for differences between animals with and without columns, it should be possible to infer how columns contribute to visual processing. Single-cell recordings outside layer 4C were made in nine squirrel monkeys, followed by labeling of ocular dominance columns in layer 4C. In the squirrel monkey, compared with the macaque, cells outside layer 4C were more likely to respond to stimulation of either eye whether ocular dominance columns were present or not. In three animals lacking ocular dominance columns, single cells were recorded from layer 4C. Remarkably, 20% of cells in layer 4C were monocular despite the absence of columns. This observation means that ocular dominance columns are not necessary for monocular cells to occur in striate cortex. In macaques each row of cytochrome oxidase (CO) patches is aligned with an ocular dominance column and receives koniocellular input serving one eye only. In squirrel monkeys this was not true: CO patches and ocular dominance columns had no spatial correlation and the koniocellular input to CO patches was binocular. Thus even when ocular dominance columns occur in the squirrel monkey, they do not transform the functional architecture to resemble that of the macaque.


Sign in / Sign up

Export Citation Format

Share Document