Axonal degeneration promotes abnormal accumulation of amyloid β-protein in ascending gracile tract of gracile axonal dystrophy (GAD) mouse

1995 ◽  
Vol 695 (2) ◽  
pp. 173-178 ◽  
Author(s):  
Nobutsune Ichihara ◽  
Jiang Wu ◽  
De Hua Chui ◽  
Kazuto Yamazaki ◽  
Tsuneo Wakabayashi ◽  
...  
2021 ◽  
Vol 8 (4) ◽  
pp. 311-324
Author(s):  
Tateki Kikuchi ◽  

<abstract> <p>Gracile axonal dystrophy (gad) mouse shows tremor, ataxia and muscular atrophy of hind limbs from about 80-days of age. These clinical features become progressively severe to death. Pathological examination reveals that main and early axonal degeneration exists in a long ascending nervous tract in dorsal column of the spinal cord: gracile nucleus and fascicules. Similar lesions are seen in axonal terminals of peripheral sensory (muscle spindles) and motor endplates. Most striking features of axonal dystrophy are “dying-back” axonal degeneration with partial swellings (“spheroids” in matured type) which come to be most frequently in gracile nucleus, followed by in order of gracile fasciculus of cervical, thoracic and lumber cord levels. Immunocytochemical increase of glial fibrillary acidic protein (GFAP) and substance P (SP) is seen in reactive astrocytes and degenerating axons. Likewise, amyloid precursor protein (APP) and amyloid β-protein (AβP) activity become positive in axons and astrocytes along ascending tract. Moreover, ubiquitin-positive dot-like structures accumulate in gracile nucleus, spinocerebellar tract, and cerebellum in <italic>gad</italic> mice after 9<sup>th</sup>-week old. Ubiquitinated structures are localized in spheroids with a larger diameter than normal. The <italic>gad</italic> mutation is caused by an in-frame deletion including exon 7 and 8 of <italic>UCH-L1</italic> gene, encoding the ubiquitin c-terminal hydrolase (UCH) isozyme (UCH-L1) selectively expressed in nervous system and testis/ovary. The <italic>gad</italic> allele encodes a truncated UCH-L1 lacking a segment of 42 amino acids containing catalytic site. The evaluation as mouse models for Parkinson's and Alzheimer's diseases and the collapse of synapse-axon circulation around central nervous system from peripheral nervous system are discussed.</p> </abstract>


1997 ◽  
Vol 3 (S2) ◽  
pp. 45-46
Author(s):  
James F. Hainfeld ◽  
Luisa Gregori ◽  
Martha N. Simon ◽  
Dmitry Goldgaber

Proteasomes are multicatalytic structures found in cells that play a major role in the proteolytic degradation of proteins. Before entering the proteasome, proteins are marked like trees to be cut by attachment of ubiquitin. Neurodegenerative disorders of aging, including Alzheimer's, show abnormal accumulation of plaques and neurofibrillary tangles (NT). The latter are composed of paired helical filaments containing ubiquitinated tau protein. The fact that ubiquitinated tau is not degraded by the proteasomes may be a key to the formation of NT. Proteasomes, like other cellular pathways, are controlled by various mechanisms. It was found that amyloid β protein (Aβ) inhibits chymotrypsin-like proteasomal activity. Additionally, Aβ was found in elevated quantity in NTs in Alzheimer's diseased brain tissue. Understanding the mechanism of action of Aβ therefore becomes important.In order to track the regulatory Aβ protein (Aβ1-40), a variant was synthesized with a terminal cysteine (Aβ1-40C40) that could be gold labeled.


2021 ◽  
Vol 22 (4) ◽  
pp. 2099
Author(s):  
Nikol Jankovska ◽  
Tomas Olejar ◽  
Radoslav Matej

Alzheimer’s disease (AD) and sporadic Creutzfeldt–Jakob disease (sCJD) are both characterized by extracellular pathologically conformed aggregates of amyloid proteins—amyloid β-protein (Aβ) and prion protein (PrPSc), respectively. To investigate the potential morphological colocalization of Aβ and PrPSc aggregates, we examined the hippocampal regions (archicortex and neocortex) of 20 subjects with confirmed comorbid AD and sCJD using neurohistopathological analyses, immunohistochemical methods, and confocal fluorescent microscopy. Our data showed that extracellular Aβ and PrPSc aggregates tended to be, in most cases, located separately, and “compound” plaques were relatively rare. We observed PrPSc plaque-like structures in the periphery of the non-compact parts of Aβ plaques, as well as in tau protein-positive dystrophic structures. The AD ABC score according to the NIA-Alzheimer’s association guidelines, and prion protein subtype with codon 129 methionine–valine (M/V) polymorphisms in sCJD, while representing key characteristics of these diseases, did not correlate with the morphology of the Aβ/PrPSc co-aggregates. However, our data showed that PrPSc aggregation could dominate during co-aggregation with non-compact Aβ in the periphery of Aβ plaques.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Woo Shik Shin ◽  
Jing Di ◽  
Qin Cao ◽  
Binsen Li ◽  
Paul M. Seidler ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


The Lancet ◽  
1992 ◽  
Vol 339 (8787) ◽  
pp. 245 ◽  
Author(s):  
Hilkka Soininen ◽  
Stina Syrjänen ◽  
Outi Heinonen ◽  
Heikki Neittaanmäki ◽  
Riitta Miettinen ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Marvin Ruiter ◽  
Christine Lützkendorf ◽  
Jian Liang ◽  
Corette J. Wierenga

The amyloid-β protein precursor is highly expressed in a subset of inhibitory neuron in the hippocampus, and inhibitory neurons have been suggested to play an important role in early Alzheimer’s disease plaque load. Here we investigated bouton dynamics in axons of hippocampal interneurons in two independent amyloidosis models. Short-term (24 h) amyloid-β (Aβ)-oligomer application to organotypic hippocampal slices slightly increased inhibitory bouton dynamics, but bouton density and dynamics were unchanged in hippocampus slices of young-adult AppNL - F - G-mice, in which Aβ levels are chronically elevated. These results indicate that loss or defective adaptation of inhibitory synapses are not a major contribution to Aβ-induced hyperexcitability.


1997 ◽  
Vol 56 (12) ◽  
pp. 1356-1362 ◽  
Author(s):  
PETER BOZNER ◽  
VALENTINA GRISHKO ◽  
SUSAN P. LEDOUX ◽  
GLENN L. WILSON ◽  
Y-C CHYAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document