proteolytic degradation
Recently Published Documents


TOTAL DOCUMENTS

504
(FIVE YEARS 53)

H-INDEX

55
(FIVE YEARS 5)

2021 ◽  
Vol 23 (1) ◽  
pp. 465
Author(s):  
Imran T. Malik ◽  
Julian D. Hegemann ◽  
Heike Brötz-Oesterhelt

The Clp protease system fulfills a plethora of important functions in bacteria. It consists of a tetradecameric ClpP barrel holding the proteolytic centers and two hexameric Clp-ATPase rings, which recognize, unfold, and then feed substrate proteins into the ClpP barrel for proteolytic degradation. Flexible loops carrying conserved tripeptide motifs protrude from the Clp-ATPases and bind into hydrophobic pockets (H-pockets) on ClpP. Here, we set out to engineer microcin J25 (MccJ25), a ribosomally synthesized and post-translationally modified peptide (RiPP) of the lasso peptide subfamily, by introducing the conserved tripeptide motifs into the lasso peptide loop region to mimic the Clp-ATPase loops. We studied the capacity of the resulting lasso peptide variants to bind to ClpP and affect its activity. From the nine variants generated, one in particular (12IGF) was able to activate ClpP from Staphylococcus aureus and Bacillus subtilis. While 12IGF conferred stability to ClpP tetradecamers and stimulated peptide degradation, it did not trigger unregulated protein degradation, in contrast to the H-pocket-binding acyldepsipeptide antibiotics (ADEPs). Interestingly, synergistic interactions between 12IGF and ADEP were observed.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2909
Author(s):  
Judit Oláh ◽  
Attila Lehotzky ◽  
Tibor Szénási ◽  
Judit Ovádi

DJ-1, a multi-functional protein with antioxidant properties, protects dopaminergic neurons against Parkinson’s disease (PD). The oligomerization/assembly of alpha-synuclein (SYN), promoted by Tubulin Polymerization Promoting Protein (TPPP/p25), is fatal in the early stage of PD. The pathological assembly of SYN with TPPP/p25 inhibits their proteolytic degradation. In this work, we identified DJ-1 as a new interactive partner of TPPP/p25, and revealed its influence on the association of TPPP/p25 with SYN. DJ-1 did not affect the TPPP/p25-derived tubulin polymerization; however, it did impede the toxic assembly of TPPP/p25 with SYN. The interaction of DJ-1 with TPPP/p25 was visualized in living human cells by fluorescence confocal microscopy coupled with Bifunctional Fluorescence Complementation (BiFC). While the transfected DJ-1 displayed homogeneous intracellular distribution, the TPPP/p25-DJ-1 complex was aligned along the microtubule network. The anti-aggregative effect of DJ-1 on the pathological TPPP/p25-SYN assemblies was established by the decrease in the intensity of their intracellular fluorescence (BiFC signal) and the increase in the proteolytic degradation of SYN complexed with TPPP/p25 due to the DJ-1-derived disassembly of SYN with TPPP/p25. These data obtained with HeLa and SH-SY5Y cells revealed the protective effect of DJ-1 against toxic SYN assemblies, which assigns a new function to the antioxidant sensor DJ-1.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3601
Author(s):  
Pavel I. Semenyuk ◽  
Lidia P. Kurochkina ◽  
Lauri Mäkinen ◽  
Vladimir I. Muronetz ◽  
Sami Hietala

A prospective technology for reversible enzyme complexation accompanied with its inactivation and protection followed by reactivation after a fast thermocontrolled release has been demonstrated. A thermoresponsive polymer with upper critical solution temperature, poly(N-acryloyl glycinamide) (PNAGA), which is soluble in water at elevated temperatures but phase separates at low temperatures, has been shown to bind lysozyme, chosen as a model enzyme, at a low temperature (10 °C and lower) but not at room temperature (around 25 °C). The cooling of the mixture of PNAGA and lysozyme solutions from room temperature resulted in the capturing of the protein and the formation of stable complexes; heating it back up was accompanied by dissolving the complexes and the release of the bound lysozyme. Captured by the polymer, lysozyme was inactive, but a temperature-mediated release from the complexes was accompanied by its reactivation. Complexation also partially protected lysozyme from proteolytic degradation by proteinase K, which is useful for biotechnological applications. The obtained results are relevant for important medicinal tasks associated with drug delivery such as the delivery and controlled release of enzyme-based drugs.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4741
Author(s):  
Jamie Toole ◽  
Hannah L. Bolt ◽  
John J. Marley ◽  
Sheila Patrick ◽  
Steven L. Cobb ◽  
...  

Peptoids (oligo N-substituted glycines) are peptide analogues, which can be designed to mimic host antimicrobial peptides, with the advantage that they are resistant to proteolytic degradation. Few studies on the antimicrobial efficacy of peptoids have focused on Gram negative anaerobic microbes associated with clinical infections, which are commonly recalcitrant to antibiotic treatment. We therefore studied the cytotoxicity and antibiofilm activity of a family of peptoids against the Gram negative obligate anaerobe Fusobacterium nucleatum, which is associated with infections in the oral cavity. Two peptoids, peptoid 4 (NaeNpheNphe)4 and peptoid 9 (NahNspeNspe)3 were shown to be efficacious against F. nucleatum biofilms at a concentration of 1 μM. At this concentration, peptoids 4 and 9 were not cytotoxic to human erythrocytes or primary human gingival fibroblast cells. Peptoids 4 and 9 therefore have merit as future therapeutics for the treatment of oral infections.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1946
Author(s):  
Nitin Chitranshi ◽  
Ashutosh Kumar ◽  
Samran Sheriff ◽  
Veer Gupta ◽  
Angela Godinez ◽  
...  

Amyloid precursor protein (APP), upon proteolytic degradation, forms aggregates of amyloid β (Aβ) and plaques in the brain, which are pathological hallmarks of Alzheimer’s disease (AD). Cathepsin B is a cysteine protease enzyme that catalyzes the proteolytic degradation of APP in the brain. Thus, cathepsin B inhibition is a crucial therapeutic aspect for the discovery of new anti-Alzheimer’s drugs. In this study, we have employed mixed-feature ligand-based virtual screening (LBVS) by integrating pharmacophore mapping, docking, and molecular dynamics to detect small, potent molecules that act as cathepsin B inhibitors. The LBVS model was generated by using hydrophobic (HY), hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD) features, using a dataset of 24 known cathepsin B inhibitors of both natural and synthetic origins. A validated eight-feature pharmacophore hypothesis (Hypo III) was utilized to screen the Maybridge chemical database. The docking score, MM-PBSA, and MM-GBSA methodology was applied to prioritize the lead compounds as virtual screening hits. These compounds share a common amide scaffold, and showed important interactions with Gln23, Cys29, His110, His111, Glu122, His199, and Trp221. The identified inhibitors were further evaluated for cathepsin-B-inhibitory activity. Our study suggests that pyridine, acetamide, and benzohydrazide compounds could be used as a starting point for the development of novel therapeutics.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4548
Author(s):  
Claudine Nicole Herlan ◽  
Anna Sonnefeld ◽  
Thomas Gloge ◽  
Julian Brückel ◽  
Luisa Chiara Schlee ◽  
...  

Outstanding affinity and specificity are the main characteristics of peptides, rendering them interesting compounds for basic and medicinal research. However, their biological applicability is limited due to fast proteolytic degradation. The use of mimetic peptoids overcomes this disadvantage, though they lack stereochemical information at the α-carbon. Hybrids composed of amino acids and peptoid monomers combine the unique properties of both parent classes. Rigidification of the backbone increases the affinity towards various targets. However, only little is known about the spatial structure of such constrained hybrids. The determination of the three-dimensional structure is a key step for the identification of new targets as well as the rational design of bioactive compounds. Herein, we report the synthesis and the structural elucidation of novel tetrameric macrocycles. Measurements were taken in solid and solution states with the help of X-ray scattering and NMR spectroscopy. The investigations made will help to find diverse applications for this new, promising compound class.


2021 ◽  
Vol 41 (7) ◽  
pp. 3271-3279
Author(s):  
HOLGER H. H. ERB ◽  
MARIA A. OSTER ◽  
NADINE GELBRICH ◽  
CLEMENS CAMMANN ◽  
CHRISTIAN THOMAS ◽  
...  

Author(s):  
Subha Sankar Paul ◽  
Goutam Biswas

: Neurodegenerative diseases emerged as one of the major age-associated diseases in the recent years. Hence, the urge for understanding the mechanism and to find targeted therapeutics becomes inevitable. Peptide-based compounds emerged as one of the important tools for its therapy. But due to a lack of tolerability, specificity and proteolytic degradation, it loses its applicability in a wider sense. Thus, the search for suitable alternatives or peptidomimetics becomes an important criterion for neurotherapeutics. One of the versatile peptidomimetics are N-substituted glycines or Peptoids, which retain many properties of peptides but are successful in evading the drawbacks of peptides. Peptoids are manifested with greater cellular permeability, less immunogenicity and their ability to be administered intra-nasally. These properties enhance their potential as neurotherapeutics with respect to their peptide counterpart. Recently, peptoids have been explored towards neurotherapeutic applications as aggregation inhibitors, cell signaling pathways modulator, and as agents for inhibiting inflammations via multiple mechanisms. Peptoids, due to their versatility and low production cost, are becoming popular among peptidomimetics as potential neurotherapeutic agents. In this review, the diverse applications of peptoids with respect to neurodegenerative disease have been explored.


2021 ◽  
Author(s):  
Joshua D. Quinn ◽  
Eric H. Weening ◽  
Virginia L. Miller

The Yersinia pestis pH 6 antigen (PsaA) forms fimbria-like structures and is required for full virulence during bubonic plague. High temperature and low pH regulate PsaA production and while recent work has uncovered the molecular aspects of temperature control, the mechanisms underlying the unusual regulation by pH are poorly understood. Using defined growth conditions, we recently showed that high levels of PsaE and PsaF (two regulatory proteins required for expression of psaA ) are present at mildly acidic pH, but these levels are greatly reduced at neutral pH, resulting in low psaA expression. In prior work, the use of translational reporters suggested that pH had no impact on translation of psaE and psaF , but rather affected protein stability of PsaE and/or PsaF. Here, we investigated the pH-dependent post-translational mechanisms predicted to regulate PsaE and PsaF stability. Using antibodies that recognize the endogenous proteins, we showed that the amount of PsaE and PsaF is defined by a distinct pH threshold. Analysis of histidine residues in the periplasmic domain of PsaF suggested it functions as a pH-sensor and indicated that the presence of PsaF is important for PsaE stability. At neutral pH, when PsaF is absent, PsaE appears to be targeted for proteolytic degradation by regulated intramembrane proteolysis. Together, our work shows that Y. pestis utilizes PsaF as a pH sensor to control psaA expression by enhancing the stability of PsaE, an essential psaA regulatory protein. IMPORTANCE Yersinia pestis is a bacterial pathogen that causes bubonic plague in humans. As Y. pestis cycles between fleas and mammals, it senses the environment within each host to appropriately control gene expression. PsaA is a protein that forms fimbria-like structures and is required for virulence. High temperature and low pH together stimulate psaA transcription by increasing the levels of two essential integral membrane regulators, PsaE and PsaF. Histidine residues in the PsaF periplasmic domain enable it to function as a pH-sensor. In the absence of PsaF, PsaE (a DNA binding protein) appears to be targeted for proteolytic degradation, thus preventing expression of psaA . This work offers insight into mechanisms that bacteria use to sense pH and control virulence gene expression.


Sign in / Sign up

Export Citation Format

Share Document